Cilia are highly complex motile, sensory, and secretory organelles that contain perhaps 1000 or more distinct protein components, many of which are subject to various posttranslational modifications such as phosphorylation, N-terminal acetylation, and proteolytic processing. Another common modification is the addition of one or more methyl groups to the side chains of arginine and lysine residues. These tunable additions delocalize the side-chain charge, decrease hydrogen bond capacity, and increase both bulk and hydrophobicity.
View Article and Find Full Text PDFAxonemal dynein motors drive ciliary motility and can consist of up to twenty distinct components with a combined mass of ~2 MDa. In mammals, failure of dyneins to assemble within the axonemal superstructure leads to primary ciliary dyskinesia. Syndromic phenotypes include infertility, rhinitis, severe bronchial conditions, and situs inversus.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 2021
Coordinated beating is crucial for the function of multiple cilia. However, the molecular mechanism is poorly understood. Here, we characterize a conserved ciliary protein CYB5D1 with a heme-binding domain and a cordon-bleu ubiquitin-like domain.
View Article and Find Full Text PDFThe outer dynein arm-docking complex (ODA-DC), which was first identified in the green alga , is a protein complex that mediates the binding of axonemal dynein and doublet microtubules. To gain a better understanding of the evolutionary conservation and functional diversity of the ODA-DC, we knocked down a homolog of DC2, a major subunit of the ODA-DC, in the planarian . Planaria are carnivorous flatworms that move by beating cilia on their ventral surface against a secreted mucus layer.
View Article and Find Full Text PDFCytoskeleton (Hoboken)
January 2020
CCDC103 is a small protein with unusual biophysical properties that is required for outer dynein arm assembly on ciliary axonemes. Mutations in both human and zebrafish CCDC103 proteins lead to primary ciliary dyskinesia. Previous studies revealed that this protein can oligomerize and appears to be arrayed along the entire length of the ciliary axoneme.
View Article and Find Full Text PDFWDR92 associates with a prefoldin-like cochaperone complex and known dynein assembly factors. WDR92 has been very highly conserved and has a phylogenetic signature consistent with it playing a role in motile ciliary assembly or activity. Knockdown of expression in planaria resulted in ciliary loss, reduced beat frequency and dyskinetic motion of the remaining ventral cilia.
View Article and Find Full Text PDFRationale: Primary ciliary dyskinesia is a genetically heterogeneous inherited condition characterised by progressive lung disease arising from abnormal cilia function. Approximately half of patients have situs inversus. The estimated prevalence of primary ciliary dyskinesia in the UK South Asian population is 1:2265.
View Article and Find Full Text PDFThe pathways controlling cilium biogenesis in different cell types have not been fully elucidated. We recently identified peptidylglycine α-amidating monooxygenase (PAM), an enzyme required for generating amidated bioactive signaling peptides, in and mammalian cilia. Here, we show that PAM is required for the normal assembly of motile and primary cilia in , planaria and mice.
View Article and Find Full Text PDFMethods Mol Biol
January 2018
Planarian flatworms are carnivorous invertebrates with astounding regenerative properties. They have a ventral surface on which thousands of motile cilia are exposed to the extracellular environment. These beat in a synchronized manner against secreted mucus thereby propelling the animal forward.
View Article and Find Full Text PDFWDR92 is a highly conserved WD-repeat protein that has been proposed to be involved in apoptosis and also to be part of a prefoldin-like cochaperone complex. We found that WDR92 has a phylogenetic signature that is generally compatible with it playing a role in the assembly or function of specifically motile cilia. To test this hypothesis, we performed an RNAi-based knockdown of WDR92 gene expression in the planarianSchmidtea mediterraneaand were able to achieve a robust reduction in mRNA expression to levels undetectable under our standard RT-PCR conditions.
View Article and Find Full Text PDFCCDC103 is an ∼29-kDa protein consisting of a central RPAP3_C domain flanked by N- and C-terminal coiled coils. Defects in CCDC103 lead to primary ciliary dyskinesia caused by the loss of outer dynein arms. This protein is present along the entire length of the ciliary axoneme and does not require other dynein or docking complex components for its integration.
View Article and Find Full Text PDFPrimary ciliary dyskinesia (PCD) is caused when defects of motile cilia lead to chronic airway infections, male infertility, and situs abnormalities. Multiple causative PCD mutations account for only 65% of cases, suggesting that many genes essential for cilia function remain to be discovered. By using zebrafish morpholino knockdown of PCD candidate genes as an in vivo screening platform, we identified c21orf59, ccdc65, and c15orf26 as critical for cilia motility.
View Article and Find Full Text PDFRetrograde intraflagellar transport (IFT) is required for assembly of cilia. We identify a Chlamydomonas flagellar protein (flagellar-associated protein 163 [FAP163]) as being closely related to the D1bIC(FAP133) intermediate chain (IC) of the dynein that powers this movement. Biochemical analysis revealed that FAP163 is present in the flagellar matrix and is actively trafficked by IFT.
View Article and Find Full Text PDFThe cytoplasmic dynein regulatory factor Lis1, which induces a persistent tight binding to microtubules and allows for transport of cargoes under high-load conditions, is also present in motile cilia/flagella. We observed that Lis1 levels in flagella of Chlamydomonas strains that exhibit defective motility due to mutation of various axonemal substructures were greatly enhanced compared with wild type; this increase was absolutely dependent on the presence within the flagellum of the outer arm dynein α heavy chain/light chain 5 thioredoxin unit. To assess whether cells might interpret defective motility as a "high-load environment," we reduced the flagellar beat frequency of wild-type cells through enhanced viscous load and by reductive stress; both treatments resulted in increased levels of flagellar Lis1, which altered the intrinsic beat frequency of the trans flagellum.
View Article and Find Full Text PDFDynein light chain 1 (LC1/DNAL1) is one of the most highly conserved components of ciliary axonemal outer arm dyneins, and it associates with both a heavy chain motor unit and tubulin located within the A-tubule of the axonemal outer doublet microtubules. In a variety of model systems, lack of LC1 or expression of mutant forms leads to profound defects in ciliary motility, including the failure of the hydrodynamic coupling needed for ciliary metachronal synchrony, random stalling during the power/recovery stroke transition, an aberrant response to imposed viscous load, and in some cases partial failure of motor assembly. These phenotypes have led to the proposal that LC1 acts as part of a mechanical switch to control motor function in response to alterations in axonemal curvature.
View Article and Find Full Text PDFMotile cilia mediate the flow of mucus and other fluids across the surface of specialized epithelia in metazoans. Efficient clearance of peri-ciliary fluids depends on the precise coordination of ciliary beating to produce metachronal waves. The role of individual dynein motors and the mechanical feedback mechanisms required for this process are not well understood.
View Article and Find Full Text PDFA system distinct from the central pair-radial spoke complex was proposed to control outer arm dynein function in response to alterations in the mechanical state of the flagellum. In this study, we examine the role of a Chlamydomonas reinhardtii outer arm dynein light chain that associates with the motor domain of the gamma heavy chain (HC). We demonstrate that expression of mutant forms of LC1 yield dominant-negative effects on swimming velocity, as the flagella continually beat out of phase and stall near or at the power/recovery stroke switchpoint.
View Article and Find Full Text PDFCilia are cellular organelles that appeared early in the evolution of eukaryotes. These structures and the pool of about 600genes involved in their assembly and function are highly conserved in organisms as distant as single-cell protists, like Chlamydomonas reinhardtti, and humans (Silflow and Lefebvre, 2001). A significant body of work on the biology of cilia has been produced over the years, with the help of powerful model organisms including C.
View Article and Find Full Text PDFThe highly conserved LC8/DYNLL family proteins were originally identified in axonemal dyneins and subsequently found to function in multiple enzyme systems. Genomic analysis uncovered a third member (LC10) of this protein class in Chlamydomonas. The LC10 protein is extracted from flagellar axonemes with 0.
View Article and Find Full Text PDFIntraflagellar transport (IFT) is the bi-directional movement of particles along the length of axonemal outer doublet microtubules and is needed for the assembly and maintenance of eukaryotic cilia and flagella. Retrograde IFT requires cytoplasmic dynein 1b, a motor complex whose organization, structural composition and regulation is poorly understood. We have characterized the product of the Chlamydomonas FAP133 gene that encodes a new WD-repeat protein similar to dynein intermediate chains and homologous to the uncharacterized vertebrate protein WD34.
View Article and Find Full Text PDFTctex1 and Tctex2 were originally described as potential distorters/sterility factors in the non-Mendelian transmission of t-haplotypes in mice. These proteins have since been identified as subunits of cytoplasmic and/or axonemal dyneins. Within the Chlamydomonas flagellum, Tctex1 is a subunit of inner arm I1.
View Article and Find Full Text PDFMembers of the LC7/Roadblock family of light chains (LCs) have been found in both cytoplasmic and axonemal dyneins. LC7a was originally identified within Chlamydomonas outer arm dynein and associates with this motor's cargo-binding region. We describe here a novel member of this protein family, termed LC7b that is also present in the Chlamydomonas flagellum.
View Article and Find Full Text PDFThe radial spokes are required for Ca(2+)-initiated intraflagellar signaling, resulting in modulation of inner and outer arm dynein activity. However, the mechanochemical properties of this signaling pathway remain unknown. Here, we describe a novel nucleoside diphosphate kinase (NDK) from the Chlamydomonas flagellum.
View Article and Find Full Text PDFTctex1 and Tctex2 were originally described in mice as putative distorters/sterility factors involved in the non-Mendelian transmission of t haplotypes. Subsequently, these proteins were found to be light chains of both cytoplasmic and axonemal dyneins. We have now identified a novel Tctex2-related protein (Tctex2b) within the Chlamydomonas flagellum.
View Article and Find Full Text PDFThe Roadblock/LC7 class of light chains associate with the intermediate chains at the base of the soluble dynein particle. In mammals, there are two Roadblock isoforms (Robl1 and Robl2), one of which (Robl2) is differentially expressed in a tissue-dependent manner and is especially prominent in testis. Here we define the alpha helical content of Robl and demonstrate using both the yeast two-hybrid system and in vitro biochemistry that Robl1 and Robl2 are capable of forming homo- and heterodimers.
View Article and Find Full Text PDF