Background: Hypertrophic cardiomyopathy is the most frequent autosomal dominant disease, yet due to genetic heterogeneity, incomplete penetrance, and phenotype variability, the prognosis of the disease course in pathogenic variant carriers remains an issue. Identifying common patterns among the effects of different genetic variants is important.
Methods: We investigated the cause of familial hypertrophic cardiomyopathy (HCM) in a family with two patients suffering from a particularly severe disease.
The locus has clinical significance for lipid metabolism, Mendelian familial hypercholesterolemia (FH), and common lipid metabolism-related diseases (coronary artery disease and Alzheimer's disease), but its intronic and structural variants are underinvestigated. The aim of this study was to design and validate a method for nearly complete sequencing of the gene using long-read Oxford Nanopore sequencing technology (ONT). Five PCR amplicons from of three patients with compound heterozygous FH were analyzed.
View Article and Find Full Text PDFIncreasing evidence suggests that both coding and non-coding regions of sarcomeric protein genes can contribute to hypertrophic cardiomyopathy (HCM). Here, we introduce an experimental workflow (tested on four patients) for complete sequencing of the most common HCM genes (, , , and ) via long-range PCR, Oxford Nanopore Technology (ONT) sequencing, and bioinformatic analysis. We applied Illumina and Sanger sequencing to validate the results, FastQC, Qualimap, and MultiQC for quality evaluations, MiniMap2 to align data, Clair3 to call and phase variants, and Annovar's tools and CADD to assess pathogenicity of variants.
View Article and Find Full Text PDFLocal vascular immune response is primarily initiated via Toll-like receptors (TLRs) and triggering receptor expressed on myeloid cells-1 (TREM-1). We previously showed that certain TLR and TREM-1 gene polymorphisms are associated with coronary artery disease (CAD). Therefore, we hypothesized that these gene polymorphisms are associated with atherosclerosis severity.
View Article and Find Full Text PDFInfective endocarditis (IE) is an inflammatory condition of the lining of the heart chambers and valves, which is generally caused by bacteria. Toll-like receptors (TLRs) and Triggering receptor expressed on myeloid cells (TREMs) are key effectors of the innate system that play a significant role in the recognition of infectious agents, particularly, bacteria. We hypothesised that inherited variation in TLR and TREM-1 genes may affect individual susceptibility to IE.
View Article and Find Full Text PDF