Publications by authors named "Rami Tamir"

Background: The purpose of this study was to investigate the efficacy of the KTP/532 YAG laser to reduce nasal congestion and discharge in patients with allergic rhinitis.

Methods: Forty-eight patients with symptoms of allergic rhinitis were treated with the KTP/532 laser. All had positive skin tests for common allergens.

View Article and Find Full Text PDF

Clinical candidate AMG 517 (1) is a potent antagonist toward multiple modes of activation of TRPV1; however, it suffers from poor solubility. Analogs with various substituents at the R region of 3 were prepared to improve the solubility while maintaining the potent TRPV1 activity of 1. Compounds were identified that maintained potency, had good pharmacokinetic properties, and improved solubility relative to 1.

View Article and Find Full Text PDF

Antagonists of the vanilloid receptor TRPV1 (transient receptor potential vanilloid type 1) have been reported to produce antihyperalgesic effects in animal models of pain. These antagonists, however, also caused concomitant hyperthermia in rodents, dogs, monkeys, and humans. Antagonist-induced hyperthermia was not observed in TRPV1 knockout mice, suggesting that the hyperthermic effect is exclusively mediated through TRPV1.

View Article and Find Full Text PDF

Transient receptor potential vanilloid 1 (TRPV1) channel antagonists may have clinical utility for the treatment of chronic nociceptive and neuropathic pain. We recently advanced a TRPV1 antagonist, 3 (AMG 517), into clinical trials as a new therapy for the treatment of pain. However, in addition to the desired analgesic effects, this TRPV1 antagonist significantly increased body core temperature following oral administration in rodents.

View Article and Find Full Text PDF

8-(6-(4-(Trifluoromethyl)phenyl)pyrimidin-4-ylamino)-1,2,3,4-tetrahydronaphthalen-2-ol (4) and analogs (5-10) were shown to be potent inhibitors of human and rat TRPV1 in vitro with increased solubility over our previous series. Synthesis, SAR, and improvements in metabolic stability and absorption of these compounds are described herein.

View Article and Find Full Text PDF

Agonists of TRPA1 such as mustard oil and its key component AITC cause pain and neurogenic inflammation in humans and pain behavior in rodents. TRPA1 is activated by numerous reactive compounds making it a sensor for reactive compounds in the body. Failure of AITC, formalin and other reactive compounds to trigger pain behavior in TRPA1 knockout mice, as well as the ability of TRPA1 antisense to alleviate cold hyperalgesia after spinal nerve ligation, suggest that TRPA1 is a potential target for novel analgesic agents.

View Article and Find Full Text PDF

A series of trisubstituted pyrimidines were synthesized to improve aqueous solubility of our first TRPV1 clinical candidate (1; AMG 517), while maintaining potent TRPV1 inhibitory activity. Structure-activity and structure-solubility studies led to the identification of compound 26. The aqueous solubility of 26 (>or=200microg/mL, 0.

View Article and Find Full Text PDF

A novel series of 4,5-biarylimidazoles as TRPV1 antagonists were designed based on the previously reported 4,6-disubstituted benzimidazole series. The analogs were evaluated for their ability to block capsaicin- or acid-induced calcium influx in TRPV1-expressing CHO cells. These studies led to the identification of a highly potent and orally bioavailable TRPV1 antagonist, imidazole 33.

View Article and Find Full Text PDF

Capsaicin, the active ingredient in some pain-relieving creams, is an agonist of a nonselective cation channel known as the transient receptor potential vanilloid type 1 (TRPV1). The pain-relieving mechanism of capsaicin includes desensitization of the channel, suggesting that TRPV1 antagonism may be a viable pain therapy approach. In agreement with the above notion, several TRPV1 antagonists have been reported to act as antihyperalgesics.

View Article and Find Full Text PDF

Based on the previously reported clinical candidate, AMG 517 (compound 1), a series of related piperazinylpyrimidine analogues were synthesized and evaluated as antagonists of the vanilloid 1 receptor (VR1 or TRPV1). Optimization of in vitro potency and physicochemical and pharmacokinetic properties led to the discovery of (R)-N-(4-(6-(4-(1-(4-fluorophenyl)ethyl)piperazin-1-yl)pyrimidin-4-yloxy)benzo[d]thiazol-2-yl)acetamide (16p), a potent TRPV1 antagonist [rTRPV1(CAP) IC50 = 3.7 nM] with excellent aqueous solubility (>or=200 microg/mL in 0.

View Article and Find Full Text PDF

A series of novel 4-oxopyrimidine TRPV1 antagonists was evaluated in assays measuring the blockade of capsaicin or acid-induced influx of calcium into CHO cells expressing TRPV1. The investigation of the structure-activity relationships in the heterocyclic A-region revealed the optimum pharmacophoric elements required for activity in this series and resulted in the identification of subnanomolar TRPV1 antagonists. The most potent of these antagonists were thoroughly profiled in pharmacokinetic assays.

View Article and Find Full Text PDF

The vanilloid receptor-1 (VR1 or TRPV1) is a member of the transient receptor potential (TRP) family of ion channels and plays a role as an integrator of multiple pain-producing stimuli. From a high-throughput screening assay, measuring calcium uptake in TRPV1-expressing cells, we identified an N-aryl trans-cinnamide (AMG9810, compound 9) that acts as a potent TRPV1 antagonist. We have demonstrated the antihyperalgesic properties of 9 in vivo and have also reported the discovery of novel, orally bioavailable cinnamides derived from this lead.

View Article and Find Full Text PDF

The vanilloid receptor TRPV1 (transient receptor potential vanilloid 1) is a cation channel that serves as a polymodal detector of pain-producing stimuli such as capsaicin, protons (pH <5.7), and heat. TRPV1 antagonists block pain behaviors in rodent models of inflammatory, neuropathic, and cancer pain, suggesting their utility as analgesics.

View Article and Find Full Text PDF

Transient receptor potential vanilloid type 1 (TRPV1) can be activated by multiple chemical and physical stimuli such as capsaicin, anandamide, protons, and heat. Capsaicin interacts with the binding pocket constituted by transmembrane regions 3 and 4, whereas protons act through residues in the prepore loop of TRPV1. Here, we report on characterization of polyclonal and monoclonal antibodies to the prepore loop of TRPV1.

View Article and Find Full Text PDF

The vanilloid receptor-1 (VR1 or TRPV1) is a membrane-bound, nonselective cation channel that is predominantly expressed by peripheral neurons sensing painful stimuli. TRPV1 antagonists produce antihyperalgesic effects in animal models of inflammatory and neuropathic pain. Herein, we describe the synthesis and the structure-activity relationships of a series of 2-(4-pyridin-2-ylpiperazin-1-yl)-1H-benzo[d]imidazoles as novel TRPV1 antagonists.

View Article and Find Full Text PDF

A thiazole derivative, 2-(2,6-dichlorobenzyl)-N-(4-isopropylphenyl) thiazole-4-carboxamide (1), was identified as a TRPV1 antagonist. We synthesized various thiazole analogs and evaluated them for their ability to block capsaicin- or acid-induced calcium influx in TRPV1-expressing CHO cells. The IC(50) values of the most potent antagonists were ca.

View Article and Find Full Text PDF

The vanilloid receptor-1 (TRPV1 or VR1) is a member of the transient receptor potential (TRP) family of ion channels and plays a role in regulating the function of sensory nerves. A growing body of evidence demonstrates the therapeutic potential of TRPV1 modulators, particularly in the management of pain. As a result of our screening efforts, we identified (E)-3-(4-tert-butylphenyl)-N-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)acrylamide (1), an antagonist that blocks the capsaicin-induced and pH-induced uptake of (45)Ca(2+) in TRPV1-expressing Chinese hamster ovary cells with IC(50) values of 17 +/- 5 and 150 +/- 80 nM, respectively.

View Article and Find Full Text PDF

The vanilloid receptor 1 (VR1 or TRPV1) is a membrane-bound, nonselective cation channel expressed by peripheral sensory neurons. TRPV1 antagonists produce antihyperalgesic effects in animal models of inflammatory and neuropathic pain. Here, we describe the in vitro and in vivo pharmacology of a novel TRPV1 antagonist, AMG 9810, (E)-3-(4-t-butylphenyl)-N-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)acrylamide.

View Article and Find Full Text PDF

Vanilloid receptor 1 (TRPV1), a membrane-associated cation channel, is activated by the pungent vanilloid from chili peppers, capsaicin, and the ultra potent vanilloid from Euphorbia resinifera, resiniferatoxin (RTX), as well as by physical stimuli (heat and protons) and proposed endogenous ligands (anandamide, N-arachidonyldopamine, N-oleoyldopamine, and products of lipoxygenase). Only limited information is available in TRPV1 on the residues that contribute to vanilloid activation. Interestingly, rabbits have been suggested to be insensitive to capsaicin and have been shown to lack detectable [(3)H]RTX binding in membranes prepared from their dorsal root ganglia.

View Article and Find Full Text PDF

Background: There is evidence that the prevalence of asthma is higher in Jewish schoolchildren than in Arab schoolchildren. It is not clear to what extent other risk factors explain these differences.

Objective: To evaluate whether the population group differences in the prevalence of asthma and current wheeze remain after adjustment for several potential risk factors.

View Article and Find Full Text PDF