Publications by authors named "Rami Reddy Vennapusa"

Hydrophobic interaction chromatography (HIC) is an important tool in the industrial purification of proteins from various sources. The HIC separation behavior of individual (or model) proteins has been widely researched by others. On the contrary, this study focused on the fractionation ability of HIC when it is challenged with whole proteomes.

View Article and Find Full Text PDF

Peptide affinity tags have become efficient tools for the purification of recombinant proteins from biological mixtures. The most commonly used ligands in this type of affinity chromatography are immobilized metal ions, proteins, antibodies, and complementary peptides. However, the major bottlenecks of this technique are still related to the ligands, including their low stability, difficulties in immobilization, and leakage into the final products.

View Article and Find Full Text PDF

Fibrous materials are proposed as novel chromatographic supports depicting high throughput and high product capacity. In this work, a composite fiber harboring strong cation-exchange moieties has been investigated. Such materials were characterized by a plethora of physical methods including degree of swelling (DS), scanning electron microscope (SEM), confocal laser scanning microscopy (CLSM), and Fourier transform infrared spectroscopy-attenuated total reflection (FTIR-ATR).

View Article and Find Full Text PDF

Protein adsorption onto hydrophobic interaction chromatography supports was studied by a surface-thermodynamics approach. To gather relevant experimental information, contact angle measurements and zeta potential determinations were performed on three different commercial adsorbent beads, Phenyl Sepharose 6 Fast Flow, Toyopearl Phenyl 650-C and Source 15 Phenyl, having soft to rigid backbone structure. Similar information was obtained for a collection of model proteins, lysozyme, bovine serum albumin (BSA), polygalacturonase, aminopeptidase, chymosin, aspartic protease, beta-galactosidase, human immunoglobulin G, and lactoferrin, were evaluated in the hydrated and in the dehydrated state.

View Article and Find Full Text PDF

β-Galactosidase is a hydrolase enzyme that catalyzes the hydrolysis of β-galactosides into monosaccharides; its major application in the food industry is to reduce the content of lactose in lactic products. The aim of this work is to recover this enzyme from a cell lysate by adsorption onto Streamline-DEAE in an expanded bed, avoiding, as much as possible, biomass deposition onto the adsorbent matrix. So as to achieve less cell debris-matrix interaction, the adsorbent surface was covered with polyvinyl pyrrolidone.

View Article and Find Full Text PDF

Common limitations encountered during the direct recovery of bioproducts from an unclarified feedstock are related to the presence of biomass in such processing systems. Biomass-related effects can be described as biomass-to-support deposition and cell-to-cell aggregation. In this work, a number of chemical additives were screened for their ability to inhibit either biomass deposition, cell aggregation, or a combination of both effects.

View Article and Find Full Text PDF

Biomass adhesion onto an adsorbent matrix or "interaction" as well as biological particle co-adhesion or "aggregation" can severely affect the overall performance of many direct-contact methods for downstream processing of bioproducts. Studies to quantitatively describe this biomass-adsorbent interaction were developed utilizing surface energetics. An indirect thermodynamic approach via contact angle and zeta potential measurements was utilized.

View Article and Find Full Text PDF