The volitional control of powered assistive devices is commonly performed by mapping the electromyographic (EMG) activity of the lower limb to joints' angular kinematics, which are then used as the input for regulation. However, during walking, the ground reaction force (GRF) plays a central role in the modulation of the gait, providing dynamic stability and propulsion during the stance phase. Including this information within the control loop of prosthetic devices can improve the quality of the final output, providing more physiological walking dynamics that enhances the usability and patient comfort.
View Article and Find Full Text PDFGait phase recognition systems based on surface electromyographic signals (EMGs) are crucial for developing advanced myoelectric control schemes that enhance the interaction between humans and lower limb assistive devices. However, machine learning models used in this context, such as Linear Discriminant Analysis (LDA) and Support Vector Machine (SVM), typically experience performance degradation when modeling the gait cycle with more than just stance and swing phases. This study introduces a generalized phasor-based feature extraction approach (PHASOR) that captures spatial myoelectric features to improve the performance of LDA and SVM in gait phase recognition.
View Article and Find Full Text PDFThe early diagnosis of diabetic neuropathy (DN) is fundamental in order to enact timely therapeutic strategies for limiting disease progression. In this work, we explored the suitability of standing balance task for identifying the presence of DN. Further, we proposed two diagnosis pathways in order to succeed in distinguishing between different stages of the disease.
View Article and Find Full Text PDFRecent studies have highlighted the possibility of using surface electromyographic (EMG) signals to develop human-computer interfaces that are also able to recognize complex motor tasks involving the hand as the handwriting of digits. However, the automatic recognition of words from EMG information has not yet been studied. The aim of this study is to investigate the feasibility of using combined forearm and wrist EMG probes for solving the handwriting recognition problem of 30 words with consolidated machine-learning techniques and aggregating state-of-the-art features extracted in the time and frequency domains.
View Article and Find Full Text PDFIn this study, a minimal setup for the ankle joint kinematics estimation is proposed relying only on proximal information of the lower-limb, i.e. thigh muscles activity and joint kinematics.
View Article and Find Full Text PDF