The goal of this study is to determine whether treatment with methylselenocysteine (MSC) results in differential uptake of irinotecan and its active metabolite (SN-38) between tumors of head and neck squamous cell carcinomas and normal tissue. The in vivo synergy between MSC and irinotecan is influenced by treatment schedule and associated with enhancement of tumor vessel maturation, intra-tumor concentration of SN-38 and apoptotic death of tumor cells. Normal tissue drug concentrations were not impacted by selenium treatment.
View Article and Find Full Text PDFBackground: Reduced expression of prostate-derived Ets transcription factor (PDEF) leads to morphologic change as well as increased migration and invasiveness of prostate cancer cells. However, the clinical relevance of PDEF expression and its relationship to anti-apoptotic protein survivin is yet to be determined.
Methods: Tissue microarrays of 73 prostate carcinomas and their adjacent benign prostate tissue, as well as 50 benign prostates were evaluated for PDEF expression by immunohistochemistry.
Background: Beta-catenin is a multifunctional oncogenic protein that contributes fundamentally to cell development and biology. Elevation in expression and activity of β-catenin has been implicated in many cancers and associated with poor prognosis. Beta-catenin is degraded in the cytoplasm by glycogen synthase kinase 3 beta (GSK-3β) through phosphorylation.
View Article and Find Full Text PDFGrowing evidence indicates that the antiapoptotic protein survivin is a major factor of drug and radiation resistance in cancer cells. However, application of this finding to therapeutic drug combination is largely unexplored. In this study, breast cancer cells were used for treatment with anticancer compounds alone or in combination.
View Article and Find Full Text PDFThis study evaluates methylseleninic acid (MSeA) improvement of paclitaxel efficacy against human ovarian cancer (skov3) with regard to survivin expression. MSeA and paclitaxel alone and in concurrent or sequential combination treatments were tested. Cell growth/death was evaluated using SRB, trypan blue, colony formation and ELISA assays.
View Article and Find Full Text PDFWe have previously shown that ovarian tumors express prostate-derived Ets transcription factor (PDEF). However, the precise role of PDEF in the prognosis of ovarian cancer is unknown. In our study, we report for the first time that expression of PDEF in tumor lesions of patients with ovarian cancer is associated with favorable prognosis.
View Article and Find Full Text PDFThis study was designed to understand the basis for the efficacy of methylselenocysteine (MSC) in increasing the therapeutic index of irinotecan against human tumor xenografts. Nude mice bearing human head and neck squamous cells carcinoma xenografts (FaDu and A253) were treated orally with different doses of MSC and irinotecan. Plasma, tumor and normal tissue samples were collected at different times after MSC treatments and were analyzed for selenium (Se) concentration using electrothermal atomic absorption spectrophotometry.
View Article and Find Full Text PDFThe study was designed to evaluate the combination treatment of methylselenocysteine (MSeC) and docetaxel and to delineate the underlying mechanism associated with observed in vitro synergy between MSeC and docetaxel in prostate cancer cells. Cells were treated with different concentrations and schedules (concurrent or sequential) of MSeC and docetaxel alone or in combination. Cell growth/death was assessed with sulforhodamine B assay, trypan blue assay, and time-lapse video.
View Article and Find Full Text PDFPurpose: We conducted a phase I study to determine the maximum tolerated dose (MTD) of irinotecan with fixed, nontoxic high dose of selenomethionine.
Experimental Design: Selenomethionine was given orally as a single daily dose containing 2,200 mug of elemental selenium (Se) starting 1 week before the first dose of irinotecan. Irinotecan was given i.
The combination of methylselenocysteine and irinotecan (CPT-11) is synergistic against FaDu and A253 xenografts. Methylselenocysteine/CPT-11 increased tumor cure rate to 100% in FaDu and to 60% in A253. In this study, the effect of methylselenocysteine on pharmacokinetic and pharmacogenetic profiles of genes relevant to CPT-11 metabolic pathway was evaluated to identify possible mechanisms associated with the observed combinational synergy.
View Article and Find Full Text PDFMethylselenocysteine (MSC) is an organic selenium compound in preventative clinical trials involving prostate, lung, and colon carcinoma. We found that methioninase-activated MSC potentiates 7-ethyl-10-hydroxycamptothecin (SN-38)-induced cell lethality in vitro in the p53-defective human head and neck carcinoma A253 cells. Activated MSC increases chk2 phosphorylation at threonine-68 induced by SN-38, with no significant effect on chk1 phosphorylation.
View Article and Find Full Text PDFPurpose: Although the combination of irinotecan and 5-Fluorouracil is clinically active, it is associated with significant toxicity and resistance. Studies were carried out to define the optimal dosage, sequence, and timing for the combination in mice bearing xenografted human tumors.
Experimental Design: The maximum tolerated dose of irinotecan and 5-Fluorouracil in combination was determined in nude mice.
A novel karenitecin, BNP1350, is a topoisomerase I-targeting anticancer agent with significant antitumor activity in vitro and in vivo. A BNP1350-resistant human head and neck carcinoma A253 cell line, denoted A253/BNPR, was developed. The A253/BNPR cell line was approximately 9-fold resistant to BNP1350 and 4-fold cross-resistant to another topoisomerase I inhibitor SN-38, the active metabolite of irinotecan.
View Article and Find Full Text PDF