In recent years, the use of gene therapy for the treatment of disease has gained substantial interest, both in academic research and in the biomedical industry. Initial experimentation in gene therapy has generated positive results, as well as questions regarding safety. However, lessons have been learned from these first investigations, among them a realization that such treatments require a method to fine-tune the expression of therapeutic genes in real-time.
View Article and Find Full Text PDFComputational properties of neuronal networks have been applied to computing systems using simplified models comprising repeated connected nodes, e.g., perceptrons, with decision-making capabilities and flexible weighted links.
View Article and Find Full Text PDFComputation frameworks have been studied in synthetic biology to achieve biosignals integration and processing, for biosensing and therapeutics applications. Biological systems exhibit nonlinearity across scales from the molecular level, to biochemical network and intercellular systems. At the molecular level, cooperative bindings contribute to nonlinear molecular signal processing in a way similar to weight variables.
View Article and Find Full Text PDFComplex biological systems in nature comprise cells that act collectively to solve sophisticated tasks. Synthetic biological systems, in contrast, are designed for specific tasks, following computational principles including logic gates and analog design. Yet such approaches cannot be easily adapted for multiple tasks in biological contexts.
View Article and Find Full Text PDFComputations widely exist in biological systems for functional regulations. Recently, incoherent feedforward loop and integral feedback controller have been implemented into Escherichia coli to achieve a robust adaptation. Here, we demonstrate that an indirect coherent feedforward loop and mutual inhibition designs can experimentally improve the fold change of promoters, by reducing the basal level while keeping the maximum activity high.
View Article and Find Full Text PDFThe protocol developed here offers a tool to enable computer tracking of Escherichia coli division and fluorescent levels over several hours. The process starts by screening for colonies that survive on minimal media, assuming that only Escherichia coli harboring the correct plasmid will be able to thrive in the specific conditions. Since the process of building large genetic circuits, requiring the assembly of many DNA parts, is challenging, circuit components are often distributed between multiple plasmids at different copy numbers requiring the use of several antibiotics.
View Article and Find Full Text PDFThe early detection of blood in urine (hematuria) can play a crucial role in the treatment of serious diseases (.., infections, kidney disease, schistosomiasis, and cancer).
View Article and Find Full Text PDFThe generation of information, energy and biomass in living cells involves integrated processes that optimally evolve into complex and robust cellular networks. Protein homo-oligomerization, which is correlated with cooperativity in biology, is one means of scaling the complexity of protein networks. It can play critical roles in determining the sensitivity of genetic regulatory circuits and metabolic pathways.
View Article and Find Full Text PDFIEEE Trans Biomed Circuits Syst
June 2020
Cytomorphic engineering attempts to study the cellular behavior of biological systems using electronics. As such, it can be considered analogous to the study of neurobiological concepts for neuromorphic engineering applications. To date, digital and analog translinear electronics have commonly been used in the design of cytomorphic circuits; Such circuits could greatly benefit from lowering the area of the digital memory via memristive circuits.
View Article and Find Full Text PDFNucleic Acids Res
November 2019
Bioluminescence is visible light produced and emitted by living cells using various biological systems (e.g. luxCDABE cassette).
View Article and Find Full Text PDFAs the fields of biotechnology and synthetic biology expand, cheap and sensitive tools are needed to measure increasingly complicated genetic circuits. In order to bypass some drawbacks of optical fluorescent reporting systems, we have designed and created a co-culture microbial fuel cell (MFC) system for electronic reporting. This system leverages the syntrophic growth of Escheriachia.
View Article and Find Full Text PDF