Aim: The aim of the study was to develop microbial enrichments from the nitrifying microbial consortia and the environment for simultaneous removal of ammonia, nitrate, and sulfide in aquaculture systems at varied salinities.
Methods And Results: Sulfur and nitrogen metabolites are the major factors affecting the farmed aquatic animal species and deteriorate the receiving environments causing ecological damage. The present study reports the development of microbial enrichments from the nitrifying microbial consortia and the environment.
Introduction: Precancerous lesion of the oral mucosa consists of a group of diseases which sometimes resemble each other leaving the clinician in a diagnostic dilemma. Etiology of these diseases varies geographically with most frequently being tobacco use, alcohol drinking, chewing of betel quid containing areca nut, and solar rays. The long-standing practice of these lifestyle habits causes an alteration in the mucosal barrier level leading to malignant transformation.
View Article and Find Full Text PDFThe development of the efficient photocatalysts with improved photoexcited charge separation and transfer is an essential for the effective photocatalytic H generation using light energy. So far, owing to the unique properties and characteristics, the transition metal phosphides (TMPs) have been proven to be high performance co-catalysts to replace some of the classic precious metal materials in the photocatalytic water splitting. In the present work, we report a novel copper phosphide (CuP) as a co-catalyst to form a well-designed fabricated photocatalyst with blacktrumpet mushroom-like ZnS semiconductor for the first time.
View Article and Find Full Text PDF