Publications by authors named "Ramesh Raghupathi"

Head trauma often impairs cognitive processes mediated within the prefrontal cortex (PFC), leading to impaired decision making and risk-taking behavior. Mild traumatic brain injury (mTBI) accounts for approximately 80 % of reported head injury cases. Most neurological symptoms of a single mTBI are transient; however, growing evidence suggests that repeated mTBI (rmTBI) results in more severe impairments that worsen with each subsequent injury.

View Article and Find Full Text PDF

Mild traumatic brain injury (mTBI) disrupts cognitive processes that influence risk taking behavior. Little is known regarding the effects of repetitive mild injury (rmTBI) or whether these outcomes are sex specific. Risk/reward decision making is mediated by the prefrontal cortex (PFC), which is densely innervated by catecholaminergic fibers.

View Article and Find Full Text PDF
Article Synopsis
  • Recent research by the Gulf War Illness Consortium and other scientists has improved our understanding of Gulf War Illness (GWI) and its underlying mechanisms.
  • Veterans with GWI often experience mild cognitive impairments, particularly in memory, which raises concerns about potential progression to dementia over time.
  • Studies indicate that elevated tau levels in the brain and high tau autoantibodies in the blood of veterans could be linked to these cognitive issues, emphasizing the urgent need for effective treatments and preventive measures.
View Article and Find Full Text PDF

Abusive head trauma in infants is a consequence of multiple episodes of abuse and results in axonal injury, brain atrophy, and chronic cognitive deficits. Anesthetized 11-day-old rats, neurologically equivalent to infants, were subjected to 1 impact/day to the intact skull for 3 successive days. Repeated, but not single impact(s) resulted in spatial learning deficits (p < 0.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) in children <4 years of age leads to long-term deficits in cognitive and learning abilities that can persist or even worsen as these children age into adolescence. In this study, the role of glucocorticoid receptor (GR) function in the dorsal hippocampus (DH) in hippocampal-dependent cognitive function and synaptic plasticity were assessed following injury to the 11-day-old rat. Brain injury produced significant impairments in spatial learning and memory in the Morris water maze in male and female rats at 1-month post-injury (adolescence), which was accompanied by impairments in induction and maintenance of long-term potentiation (LTP) in the CA1 region of the DH.

View Article and Find Full Text PDF

Following mild traumatic brain injury (TBI), high school and collegiate-aged females tend to report more emotional symptoms than males. Adolescent male and female rats (35 days old) were subjected to mild TBI and evaluated for anxiety- and depression-like behaviors using the elevated plus maze and forced swim test (FST), respectively, and cellular alterations. Injured brains did not exhibit an overt lesion, atrophy of tissue or astrocytic reactivity underneath the impact site at 6-week post-injury, suggestive of the mild nature of trauma.

View Article and Find Full Text PDF

Pediatric severe traumatic brain injury (TBI) is one of the leading causes of disability and death. One of the classic pathoanatomic brain injury lesions following severe pediatric TBI is diffuse (multifocal) axonal injury (DAI). In this single institution study, our overarching goal was to describe the clinical characteristics and long-term outcome trajectory of severe pediatric TBI patients with DAI.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) is a leading cause of injury-induced disability in young children worldwide, and social behavior impairments in this population are a significant challenge for affected patients and their families. The protracted trajectory of secondary injury processes triggered by a TBI during early life-alongside ongoing developmental maturation-offers an extended time window when therapeutic interventions may yield functional benefits. This mini-review explores the scarce but promising pre-clinical literature to date demonstrating that social behavior impairments after early life brain injuries can be modified by drug therapies.

View Article and Find Full Text PDF

Pediatric traumatic brain injury (TBI) results in heightened risk for social deficits that can emerge during adolescence and adulthood. A moderate TBI in male and female rats on postnatal day 11 (equivalent to children below the age of 4) resulted in impairments in social novelty recognition, defined as the preference for interacting with a novel rat compared with a familiar rat, but not sociability, defined as the preference for interacting with a rat compared with an object in the three-chamber test when tested at four weeks (adolescence) and eight weeks (adulthood) postinjury. The deficits in social recognition were not accompanied by deficits in novel object recognition memory and were associated with a decrease in the frequency of spontaneous inhibitory postsynaptic currents (IPSCs) recorded from pyramidal neurons within Layer II/III of the medial prefrontal cortex (mPFC).

View Article and Find Full Text PDF

Mild traumatic brain injury (TBI) results in chronic affective disorders such as depression, anxiety, and fear that persist up to years following injury and significantly impair the quality of life for patients. Although a great deal of research has contributed to defining symptoms of mild TBI, there are no adequate drug therapies for brain-injured individuals. Preclinical studies have modeled these deficits in affective behaviors post-injury to understand the underlying mechanisms with a view to developing appropriate treatment strategies.

View Article and Find Full Text PDF

There has been a growing interest in the potential of stem cell transplantation as therapy for pediatric brain injuries. Studies in pre-clinical models of pediatric brain injury such as Traumatic Brain Injury (TBI) and neonatal hypoxia-ischemia (HI) have contributed to our understanding of the roles of endogenous stem cells in repair processes and functional recovery following brain injury, and the effects of exogenous stem cell transplantation on recovery from brain injury. Although only a handful of studies have evaluated these effects in models of pediatric TBI, many studies have evaluated stem cell transplantation therapy in models of neonatal HI which has a considerable overlap of injury pathology with pediatric TBI.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) in children younger than 4 years old results in cognitive and psychosocial deficits in adolescence and adulthood. At 4 weeks following closed head injury on postnatal day 11, male and female rats exhibited impairment in novel object recognition memory (NOR) along with an increase in open arm time in the elevated plus maze (EPM), suggestive of risk-taking behaviors. This was accompanied by an increase in intrinsic excitability and frequency of spontaneous excitatory post-synaptic currents (EPSCs), and a decrease in the frequency of spontaneous inhibitory post-synaptic currents in layer 2/3 neurons within the medial prefrontal cortex (PFC), a region that is implicated in both object recognition and risk-taking behaviors.

View Article and Find Full Text PDF

The inflammatory response is a significant component of the pathophysiology of pediatric traumatic brain injury. High levels of inflammatory mediators have been found in the cerebrospinal fluid of brain-injured children which have been linked to poor prognosis. Targeting aspects of the inflammatory response in the hopes of finding a viable post-injury therapeutic option has gained attention.

View Article and Find Full Text PDF

Pediatric traumatic brain injury (TBI) remains one of the leading causes of morbidity and mortality in children. Experimental and clinical studies demonstrate that the developmental age, the type of injury (diffuse vs. focal) and sex may play important roles in the response of the developing brain to a traumatic injury.

View Article and Find Full Text PDF

Recent studies have helped identify multiple factors affecting increased risk for substance use disorders (SUDs) following traumatic brain injury (TBI). These factors include age at the time of injury, repetitive injury and TBI severity, neurocircuits, neurotransmitter systems, neuroinflammation, and sex differences. This review will address each of these factors by discussing 1) the clinical and preclinical data identifying patient populations at greatest risk for SUDs post-TBI, 2) TBI-related neuropathology in discrete brain regions heavily implicated in SUDs, and 3) the effects of TBI on molecular mechanisms that may drive substance abuse behavior, like dopaminergic and glutamatergic transmission or neuroimmune signaling in mesolimbic regions of the brain.

View Article and Find Full Text PDF

The utility of in vitro models of traumatic brain injury (TBI) depends on their ability to recapitulate the in vivo TBI cascade. In this study, we used a genome-wide approach to compare changes in gene expression at several time points post-injury in both an in vitro model and an in vivo model of TBI. We found a total of 2073 differentially expressed genes in our in vitro model and 877 differentially expressed genes in our in vivo model when compared to noninjured controls.

View Article and Find Full Text PDF

Elevated microglial/macrophage-associated biomarkers in the cerebrospinal fluid of infant victims of abusive head trauma (AHT) suggest that these cells play a role in the pathophysiology of the injury. In a model of AHT in 11-day-old rats, 3 impacts (24 hours apart) resulted in spatial learning and memory deficits and increased brain microglial/macrophage reactivity, traumatic axonal injury, neuronal degeneration, and cortical and white-matter atrophy. The antibiotic minocycline has been effective in decreasing injury-induced microglial/macrophage activation while simultaneously attenuating cellular and functional deficits in models of neonatal hypoxic ischemia, but the potential for this compound to rescue deficits after impact-based trauma to the immature brain remains unexplored.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) in humans and in animals leads to an acute and sustained increase in tissue glutamate concentrations within the brain, triggering glutamate-mediated excitotoxicity. Excitatory amino acid transporters (EAATs) are responsible for maintaining extracellular central nervous system glutamate concentrations below neurotoxic levels. Our results demonstrate that as early as 5 min and up to 2 h following brain trauma in brain-injured rats, the activity (Vmax) of EAAT2 in the cortex and the hippocampus was significantly decreased, compared with sham-injured animals.

View Article and Find Full Text PDF

Patients enrolled in clinical trials for traumatic brain injury (TBI) may present with heterogeneous features over a range of injury severity, such as diffuse axonal injury, ischemia, edema, hemorrhage, oxidative damage, mitochondrial and metabolic dysfunction, excitotoxicity, inflammation, and other pathophysiological processes. To determine whether combination therapies might be more effective than monotherapy at attenuating moderate TBI or promoting recovery, the National Institutes of Health funded six preclinical studies in adult and immature male rats to evaluate promising acute treatments alone and in combination. Each of the studies had a solid rationale for its approach based on previous research, but only one reported significant improvements in long-term outcomes across a battery of behavioral tests.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is characterized by the deposition of amyloid β (Aβ), a peptide generated from proteolytic processing of its precursor, amyloid precursor protein (APP). Canonical APP proteolysis occurs via α-, β-, and γ-secretases. APP is also actively degraded by protein degradation systems.

View Article and Find Full Text PDF