Publications by authors named "Ramesh Niranjan"

Hydroxyapatite, renowned for its biocompatibility and osteoconductive properties, plays a fundamental role in bone regeneration owing to its resemblance to natural bone mineral, thus offering considerable potential for advancing tissue engineering strategies. In this article, the innovative integration of silicon ions into biogenic (bovine-derived) hydroxyapatite (SiBHA) via a tailored sol-gel process is reported. The resultant SiBHA scaffolds exhibited an interconnected microporous structure with a total porosity of 70% and pore dimensions ranging from 120 to 650 µm.

View Article and Find Full Text PDF

Hydroxyapatite is widely used in bone implantation because of its similar mineral composition to natural bone, allowing it to serve as a biocompatible osteoconductive support. A bovine-derived hydroxyapatite (BHA) scaffold was developed through an array of defatting and deproteinization procedures. The BHA scaffold was substituted with fluoride ions using a modified sol-gel method to produce a bovine-derived fluorapatite (BFA) scaffold.

View Article and Find Full Text PDF

In this study we examine the influence of wool-derived keratin intermediate filament proteins (kIFPs) on human dental pulp-derived stem cells (hDPSCs). kIFPs were diluted (10 mg/mL to 0.001 mg/mL) in cell culture media.

View Article and Find Full Text PDF

For more than two centuries, lack of sunlight has been understood to cause vitamin D deficiency and documented as a primary cause of rickets. As such, evidence of rickets in the archeological record has been used as a proxy for vitamin D status in past individuals and populations. In the last decade, a clinical global consensus has emerged wherein it is recognized that dietary calcium deficiency also plays a role in the manifestation of rickets and classic skeletal deformities may not form if dietary calcium is normal even if vitamin D is deficient.

View Article and Find Full Text PDF

Reconstituted keratin is a novel bone graft material when prepared as a rigid scaffold. Understanding the immunogenicity of this material is important to determine whether this substance is a viable surgical option. Previous studies have shown no innate immune system activation in response to reconstituted keratin implants.

View Article and Find Full Text PDF

A biocomposite scaffold was developed using chitosan (CS) and bovine-derived hydroxyapatite (BHA). The prepared CS-BHA biocomposite scaffold was characterized for its physiochemical and biological properties and compared against control BHA scaffolds to evaluate the effects of CS. Energy-dispersive X-ray analysis confirmed the elemental composition of the CS-BHA scaffold, which presented peaks for C and O from CS and Ca and P along with trace elements in the bovine bone such as Na, Mg, and Cl.

View Article and Find Full Text PDF

Hydroxyapatite (HA) derived from bovine bones garnered wider interest as a bone substitute due to their abundant availability as meat wastes and similarities in morphology and mineral composition to human bone. In our previous work, we developed an easy and reproducible method to prepare xenograft HA scaffolds from NZ bovine cancellous bones (BHA). However, the processing methodology rendered the material mechanically weak.

View Article and Find Full Text PDF

Bone tissue engineering has emerged as one of the most indispensable approaches to address bone trauma in the past few decades. This approach offers an efficient and a risk-free alternative to autografts and allografts by employing a combination of biomaterials and cells to promote bone regeneration. Hydroxyapatite (HA) is a ceramic biomaterial that mimics the mineral composition of bones and teeth in vertebrates.

View Article and Find Full Text PDF

Hydrogels are hydrophilic polymers that have a wide range of biomedical applications including bone tissue engineering. In this study we report preparation and characterization of a thermosensitive hydrogel (Zn-CS/β-GP) containing zinc (Zn), chitosan (CS) and beta-glycerophosphate (β-GP) for bone tissue engineering. The prepared hydrogel exhibited a liquid state at room temperature and turned into a gel at body temperature.

View Article and Find Full Text PDF