Publications by authors named "Ramesh N Kapoor"

The reaction between Ta(OEt)5 and 1,1,3,3-tetramethyl-1,3-disiloxanediol, (HOSiMe2OSiMe2OH), leads to new siloxy complexes in which the dimeric nature of Ta(OEt)5 is maintained with both bridging ethoxide and disiloxanediolato bridges. With equal amounts of the reagents, two terminal OEt groups are replaced to form [Ta(OEt)2]2(mu-OEt)2(mu-OSiMe2OSiMe2O)2, 1, whereas with an excess of diol, the remaining terminal OEt groups are also replaced but with a trisiloxanediolato unit to form [Ta(OSiMe2OSiMe2OSiMe2O)]2(mu-OEt)2(mu-OSiMe2OSiMe2O)2, 2. Complexes 1 and 2 catalyze the transformation of HOSiMe2OSiMe2OH to polysiloxanes.

View Article and Find Full Text PDF

Electrospray ionization (ESI) quadrupole ion trap mass spectrometry (QIT-MS) and collisionally activated dissociation (CAD) were used to evaluate the rare-earth binding properties of two hydrophobic carbamoylmethylphosphine oxide (CMPO) ligands, the normal bidentate variety, (t-BuC6H4)2P(O)CH2C(O)N(i-Bu)2 (A), a new potentially tridentate extractant, (t-BuC6H4)2P(O)CH[CH2C(O)N(i-Bu)2]C(O)N(i-Bu)2 (B), and tributyl phosphate. The mass spectral results obtained from analysis of 1% HNO3/methanol solution containing the ligands and dissolved lanthanide salts reveal that the favorable stoichiometries of the ligand/metal/nitrate complexes are 2:1:2 for the bidentate ligand A, 1:1:2 for the tridentate ligand B, and 3:1:2 for the monodentate tributyl phosphate. These observed stoichiometries correlate with the number of available binding sites on each ligand as well as with potential steric effects.

View Article and Find Full Text PDF