Unlike other malignancies, ovarian cancer (OC) creates a complex tumor microenvironment with distinctive peritoneal ascites consisting of a mixture of several immunosuppressive cells which impair the ability of the patient's immune system to fight the disease. The poor survival rates observed in advanced stage OC patients and the lack of effective conventional therapeutic options have been attributed in large part to the immature dendritic cells (DCs), IL-10 secreting regulatory T cells, tumor-associated macrophages, myeloid-derived suppressor cells, and cancer stem cells that secrete inhibitory cytokines. This review highlights the critical role played by the intraperitoneal presence of IL-10 in the generation of an immunosuppressive tumor microenvironment.
View Article and Find Full Text PDFBackground: We have previously demonstrated in vitro cytotoxicity of mesothelin-chimeric antigen receptor autologous T cells against pancreatic cancer cells using lentiviral vectors, but these vectors pose safety concerns. Here, we incorporated Sleeping Beauty and minicircle design enhancements into interleukin-2-secreting natural NK-92MI cells to eliminate both bacterial and viral components and address inhibition by the tumor microenvironment.
Methods: Parental (conventional deoxyribonucleic acid)-mesothelin-chimeric antigen receptor and minicircle-mesothelin-chimeric antigen receptor vectors were electroporated into NK-92MI cells and engraftment was visualized by immunofluorescence analysis with protein-L staining.
Background: Pancreatic cancer cells are known to shield themselves from immunosurveillance by secreting immune inhibitory cytokines such as Interleukin-10. Using mesothelin, a differentiating antigen that is overexpressed in pancreatic cancer, we assessed the negative effect of the tumor microenvironment on chimeric antigen receptor T cell-based immunotherapy and its reversal via depletion of Interleukin-10.
Methods: T cells cultured in pancreatic cancer-cell-conditioned medium were transduced with lentiviruses encoding mesothelin-chimeric antigen receptor in the presence or absence of anti-Interleukin-10-blocking antibody.
Purpose: MicroRNA (miR)-26a has been identified as a tumor suppressor in pancreatic cancer cells. Although wild-type p53 controls cell-cycle progression, its mutant form normally present in pancreatic cancer loses this capability. Phosphorylation is known to restore wild-type activity to mutant p53.
View Article and Find Full Text PDFImportance: In conjunction with chemotherapy, immunotherapy with dendritic cells (DCs) may eliminate minimal disease burden by generating cytotoxic T lymphocytes. Enhanced cytosolic bioavailability of tumor-specific antigens improves access to human leukocyte antigen (HLA) class I molecules for more efficient cytotoxic T lymphocyte generation. Various cell-penetrating domains (CPDs) are known to ferry covalently linked heterologous antigens to the intracellular compartment by traversing the plasma membrane.
View Article and Find Full Text PDFRecent observations suggest a lower incidence of malignancies in patients infected with HIV during treatment with Highly Active Anti-Retroviral Therapy (HAART) utilizing protease inhibitors. We investigated the effects of ritonavir, a FDA approved HIV protease inhibitor, on proliferation of pancreatic ductal adeno-carcinoma (PDAC) cell lines. Human PDAC cell lines BxPC-3, MIA PaCa-2, and PANC-1 were propagated under standard conditions and treated with serial dilutions of ritonavir.
View Article and Find Full Text PDFMAGE-A3 is highly expressed in epithelial ovarian cancer (EOC), making it a promising candidate for immunotherapy. We investigated whether dendritic cells (DCs) transduced with a rAAV-6 capsid mutant vector Y445F could elicit effective MAGE-A3-specific anti-tumor cytotoxic T lymphocyte (CTL) responses in vitro. MAGE-A3 was cloned and rAAV-6-MAGE-A3 purified, followed by proviral genome detection using real-time PCR.
View Article and Find Full Text PDFPurpose: Enhancer of zeste homologue 2 (EZH2), a component of the chromatin modification protein complex, is upregulated in pancreatic ductal adenocarcinoma (PDAC), whereas loss of p53 and its downstream target, p21(waf1/cip1), is also observed frequently. We sought to investigate the role of the p53-p21(waf1/cip1) pathway in relation to EZH2-mediated inhibition of PDAC.
Methods: The PANC-1 cell line was utilized in chromatin immunoprecipitation, gene profiling, Western blot, cell invasion, cell proliferation, and tumor xenograft assays.
The enhancer of zeste homolog 2 (EZH2) methyltransferase is a transcriptional repressor. EZH2 is abnormally elevated in epithelial ovarian cancer (EOC). We demonstrated that EZH2 knockdown inhibited cell growth, activated apoptosis, and enhanced chemosensitivity.
View Article and Find Full Text PDFPurpose: To investigate the possibility of inhibiting the progression of pancreatic ductal adenocarcinoma (PDAC) by facilitating the expression of E-cadherin through the enforced expression of microRNA-101 (miR-101).
Methods: In situ hybridization was conducted with archival tissue using a double digoxigenin-labeled probe. Chromatin immunoprecipitation (ChIP) assay was conducted with EZ-Magna ChIPTM A.
Purpose: MicroRNA-101 (miR-101) expression is negatively associated with tumor growth and proliferation in several solid epithelial cancers. Enhancer of zeste homolog 2 (EzH2) appears to be a functional target of miR-101. We explore the role of miR-101 and its interaction with EzH2 in epithelial ovarian carcinoma (EOC).
View Article and Find Full Text PDFPure populations of tumor cells are essential for the identification of tumor-associated proteins for the development of targeted therapy. In recent years, laser capture microdissection (LCM) has been used successfully to obtain distinct populations of cells for subsequent molecular analysis. The polycomb group (PcG) protein, enhancer of zeste homolog 2 (EzH2), a methyl-transferase that plays a key role in -transcriptional gene repression, is frequently overexpressed in several malignant tumors.
View Article and Find Full Text PDFInt J Gynecol Cancer
February 2011
Objective: To compare the survival of patients with bilateral versus unilateral malignant ovarian germ cell tumors (OGCT).
Methods: Patients with a diagnosis of OGCT were identified from the Surveillance, Epidemiology, and End Results Program for the period 1988 to 2006 and were divided into bilateral and unilateral subgroups. Only surgically treated patients were included.
Introduction: The incidence of Barrett esophageal adenocarcinoma (BEAC) has been increasing at an alarming rate in western countries. In this study, we have evaluated the therapeutic potential of sulforaphane (SFN), an antioxidant derived from broccoli, in BEAC.
Methods: BEAC cells were treated with SFN, alone or in combination with chemotherapeutic, paclitaxel, or telomerase-inhibiting agents (MST-312, GRN163L), and live cell number determined at various time points.
Background: Sulforaphane (SFN), an isothiocyanate phytochemical present predominantly in cruciferous vegetables such as brussels sprout and broccoli, is considered a promising chemo-preventive agent against cancer. In-vitro exposure to SFN appears to result in the induction of apoptosis and cell-cycle arrest in a variety of tumor types. However, the molecular mechanisms leading to the inhibition of cell cycle progression by SFN are poorly understood in epithelial ovarian cancer cells (EOC).
View Article and Find Full Text PDFPurpose: The goal of this study was to investigate the effects of silencing HIF-1 alpha gene expression with specific small interfering RNA (siRNA) on VEGF production and angiogenesis in epithelial ovarian cancer (EOC) cells.
Methods: Two EOC cell lines, MDAH-2774 and SKOV-3, were cultured under normoxic (20% O(2)) and hypoxic (2% O(2)) conditions using standard techniques. After EOC cells were transfected with siRNA, HIF-1 alpha and VEGF mRNA levels were measured by real-time RT-PCR.
Background: Ovarian cancer is the leading cause of mortality from gynecological malignancies, often undetectable in early stages. The difficulty of detecting the disease in its early stages and the propensity of ovarian cancer cells to develop resistance to known chemotherapeutic treatments dramatically decreases the 5-year survival rate. Chemotherapy with paclitaxel after surgery increases median survival only by 2 to 3 years in stage IV disease highlights the need for more effective drugs.
View Article and Find Full Text PDFA prominent feature of most if not all cancers is a striking genetic instability, leading to ongoing accrual of mutational changes, some of which underlie tumor progression, including acquisition of invasiveness, drug resistance, and metastasis. Thus, the molecular basis for the generation of this genetic diversity in cancer cells has important implications in understanding cancer progression. Here we report that homologous recombination (HR) activity is elevated in multiple myeloma (MM) cells and leads to an increased rate of mutation and progressive accumulation of genetic variation over time.
View Article and Find Full Text PDFPurpose: The aims of this study were to investigate telomere function in normal and Barrett's esophageal adenocarcinoma (BEAC) cells purified by laser capture microdissection and to evaluate the effect of telomerase inhibition in cancer cells in vitro and in vivo.
Experimental Design: Epithelial cells were purified from surgically resected esophagi. Telomerase activity was measured by modified telomeric repeat amplification protocol and telomere length was determined by real-time PCR assay.
The 90-kDa heat shock protein (Hsp90) plays an important role in conformational regulation of cellular proteins and thereby cellular signaling and function. As Hsp90 is considered a key component of immune function and its inhibition has become an important target for cancer therapy, we here evaluated the role of Hsp90 in human dendritic cell (DC) phenotype and function. Hsp90 inhibition significantly decreased cell surface expression of costimulatory (CD40, CD80, CD86), maturation (CD83), and MHC (HLA-A, B, C and HLA-DP, DQ, DR) markers in immature DC and mature DC and was associated with down-regulation of both RNA and intracellular protein expression.
View Article and Find Full Text PDFEpigallocatechin-3-gallate (EGCG), a polyphenol extracted from green tea, is an antioxidant with chemopreventive and chemotherapeutic actions. Based on its ability to modulate growth factor-mediated cell proliferation, we evaluated its efficacy in multiple myeloma (MM). EGCG induced both dose- and time-dependent growth arrest and subsequent apoptotic cell death in MM cell lines including IL-6-dependent cells and primary patient cells, without significant effect on the growth of peripheral blood mononuclear cells (PBMCs) and normal fibroblasts.
View Article and Find Full Text PDFMyeloma vaccines, based on dendritic cells pulsed with idiotype or tumor lysate, have been met with limited success, probably in part due to insufficient cross-priming of myeloma antigens. A powerful method to introduce myeloma-associated antigens into the cytosol of dendritic cells is protein transduction, a process by which proteins fused with a protein transduction domain (PTD) freely traverse membrane barriers. NY-ESO-1, an immunogenic antigen by itself highly expressed in 60% of high-risk myeloma patients, was purified to near homogeneity both alone and as a recombinant fusion protein with a PTD, derived from HIV-Tat.
View Article and Find Full Text PDFBackground: In cancer cells, telomerase induction helps maintain telomere length and thereby bypasses senescence and provides enhanced replicative potential. Chemical inhibitors of telomerase have been shown to reactivate telomere shortening and cause replicative senescence and apoptotic cell death of tumor cells while having little or no effect on normal diploid cells.
Results: We designed siRNAs against two different regions of telomerase gene and evaluated their effect on telomere length, proliferative potential, and gene expression in Barrett's adenocarcinoma SEG-1 cells.