J Phys Chem C Nanomater Interfaces
September 2017
In this work, we tested our hypothesis that surface chemistry and antioxidant properties of cerium nanoparticles (CNPs) are affected by presence of counterions. We first employed various precursor cerium (III) (Ce(III)) salts with different counterions (acetate, nitrate, chloride, sulfate) to synthesize CNPs following the same wet chemical methodology. Electron spin resonance (ESR) studies provided evidence for the formation of radicals from counterions (e.
View Article and Find Full Text PDFNanoparticles have proven to be novel material with resourceful applications in the field of nanomedicine. Cerium oxide nanoparticles (CNPs) coated with dextran (Dex-CNPs) have been shown to exhibit anticancer properties which is attributed to the change in oxidation states mediated at the oxygen vacancies on the surface of CNPs. In this study, the extreme sensitivity of Dex-CNPs to visible light is demonstrated using room light with a clear indication of synergetic phenomenon of photoreduction of CNPs in the presence of dextran which undergoes simultaneous oxidation.
View Article and Find Full Text PDFThe application of cerium oxide nanoparticles (CNPs) for therapeutic purposes requires a stable dispersion of nanoparticles in a biological environment. The objective of this study is to tailor the properties of polyelectrolyte coated CNPs as a function of molecular weight to achieve a stable and catalytic active dispersion. The coating of CNPs with polyacrylic acid (PAA) has increased the dispersion stability of CNPs and enhanced the catalytic ability.
View Article and Find Full Text PDFThe study of the chemical and biological properties of CeO2 nanoparticles (CNPs) has expanded recently due to its therapeutic potential, and the methods used to synthesize these materials are diverse. Moreover, conflicting reports exist regarding the toxicity of CNPs. To help resolve these discrepancies, we must first determine whether CNPs made by different methods are similar or different in their physicochemical and catalytic properties.
View Article and Find Full Text PDFUndoped nanostructured tin oxide (SnO(2)) arrays were prepared on oxidized Si substrates by nanosecond pulsed laser interference irradiation for hydrogen gas sensing applications. Scanning electron microscopy (SEM), in combination with Atomic Force Microscopy (AFM), showed that the SnO(2) surface consisted of periodic features of ∼130 nm width, ∼228 nm spacing, an average height of ∼8 nm along the periodicity and tens of microns length. The SnO(2) nanostructured arrays and precursor thin films were tested by cyclic exposure under dynamic conditions of hydrogen in the concentration range of 300-9000 ppm.
View Article and Find Full Text PDF