In Drosophila melanogaster, Dcr-2:R2D2 heterodimer binds to the 21 nucleotide siRNA duplex to form the R2D2/Dcr-2 Initiator (RDI) complex, which is critical for the initiation of siRNA-induced silencing complex (RISC) assembly. During RDI complex formation, R2D2, a protein that contains three dsRNA binding domains (dsRBD), senses two aspects of the siRNA: thermodynamically more stable end (asymmetry sensing) and the 5'-phosphate (5'-P) recognition. Despite several detailed studies to date, the molecular determinants arising from R2D2 for performing these two tasks remain elusive.
View Article and Find Full Text PDFIn the model organism Drosophila melanogaster, one of the Dicer homologs, Dcr-2, initiates the RNA interference pathway by cleaving long double-stranded RNA into small interfering RNA (siRNA). The Dcr-2:R2D2 heterodimer subsequently binds to the 21-nucleotide siRNA to form the R2D2:Dcr-2 Initiator (RDI) complex, which is critical for initiating the assembly of the RNA-induced silencing complex containing guide siRNA strand. During RDI complex formation, R2D2 senses the stability of the 5' end of the siRNA and a 5'-phosphate group, although the underlying mechanism of siRNA asymmetry sensing and 5'-phosphate recognition by R2D2 is elusive.
View Article and Find Full Text PDFG protein-coupled receptors (GPCRs) are major signaling proteins in eukaryotic cells and are important drug targets. In spite of their role in GPCR function, the extramembranous regions of GPCRs are relatively less appreciated. The third intracellular loop (ICL3), which connects transmembrane helices V and VI, is important in this context since its crucial role in signaling has been documented for a number of GPCRs.
View Article and Find Full Text PDFIn Arabidopsis thaliana, endogenous trans-acting and exogenous siRNA pathways are initiated by the interaction of DRB4 with trigger dsRNA. Further, DCL4:DRB4 complex cleaves the dsRNA into 21 bp siRNA. Understanding molecular determinants and mechanistic details of dsRNA recognition by DRB4 is vital for inducing long-term RNAi-mediated gene regulation in plants.
View Article and Find Full Text PDF