Saturn's mid-sized icy moons have complex relationships with Saturn's interior, the rings, and with each other, which can be expressed in their shapes, interiors, and geology. Observations of their physical states can, thus, provide important constraints on the ages and formation mechanism(s) of the moons, which in turn informs our understanding of the formation and evolution of Saturn and its rings. Here, we describe the cratering records of the mid-sized moons and the value and limitations of their use for constraining the histories of the moons.
View Article and Find Full Text PDFMoons potentially harbouring a global ocean are tending to become relatively common objects in the Solar System. The presence of these long-lived global oceans is generally betrayed by surface modification owing to internal dynamics. Hence, Mimas would be the most unlikely place to look for the presence of a global ocean.
View Article and Find Full Text PDFSeismological models from Apollo missions provided the first records of the Moon inner structure with a decrease in seismic wave velocities at the core-mantle boundary. The resolution of these records prevents a strict detection of a putative lunar solid inner core and the impact of the lunar mantle overturn in the lowest part of the Moon is still discussed. Here we combine geophysical and geodesic constraints from Monte Carlo exploration and thermodynamical simulations for different Moon internal structures to show that only models with a low viscosity zone enriched in ilmenite and an inner core present densities deduced from thermodynamic constraints compatible with densities deduced from tidal deformations.
View Article and Find Full Text PDFRemote observations of the asteroid (1) Ceres from ground- and space-based telescopes have provided its approximate density and shape, leading to a range of models for the interior of Ceres, from homogeneous to fully differentiated. A previously missing parameter that can place a strong constraint on the interior of Ceres is its moment of inertia, which requires the measurement of its gravitational variation together with either precession rate or a validated assumption of hydrostatic equilibrium. However, Earth-based remote observations cannot measure gravity variations and the magnitude of the precession rate is too small to be detected.
View Article and Find Full Text PDFLike our Moon, the majority of the solar system's satellites are locked in a 1:1 spin-orbit resonance; on average, these satellites show the same face toward the planet at a constant rotation rate equal to the satellite's orbital rate. In addition to the uniform rotational motion, physical librations (oscillations about an equilibrium) also occur. The librations may contain signatures of the satellite's internal properties.
View Article and Find Full Text PDF