Publications by authors named "Rambabu G"

An efficient and reusable green catalyst for the synthesis of β-aminocarbonyl compounds has been developed. In this new and greener approach, β-aminocarbonyl compounds (1a-1r) were obtained by Montmorillonite K10 clay catalyzed reaction of aryl amines, aliphatic/aromatic aldehydes and β-ketoesters. Molecular docking investigations were performed for all compounds (1a-1r) with the proteins PDB ID: 1JIJ and 1KZN for S.

View Article and Find Full Text PDF

A membrane electrolyte that restricts the methanol cross-over while retaining proton conductivity is essential for better electrochemical selectivity in direct methanol fuel cells (DMFCs). Extensive research carried out to explore numerous blends and composites for application as polymer electrolyte membranes (PEMs) revealed promising electrochemical selectivity in DMFCs of carbon nanomaterial-based polymer composites. The present review covers important literature on different carbon nanomaterial-based PEMs reported during the last decade.

View Article and Find Full Text PDF

Fibroblast growth factor receptor 1 (FGFR1) a tyrosine kinase receptor, plays important roles in angiogenesis, embryonic development, cell proliferation, cell differentiation, and wound healing. The FGFR isoforms and their receptors (FGFRs) considered as a potential targets and under intense research to design potential anticancer agents. Fibroblast growth factors (FGF's) and its growth factor receptors (FGFR) plays vital role in one of the critical pathway in monitoring angiogenesis.

View Article and Find Full Text PDF

In the title compound, C12H16FNO2, the dioxane ring adopts a chair conformation with the methyl substituents and the C-N bond in equatorial orientations. Its mean plane subtends a dihedral angle of 40.17 (6)° with the benzene ring.

View Article and Find Full Text PDF

In the title compound, C12H16BrNO2, the dioxane ring adopts a chair conformation and its mean plane makes a dihedral angle of 60.63 (12)° with the 4-bromo-phenyl ring. In the crystal, mol-ecules are linked by pairs of N-H⋯O hydrogen bonds, forming inversion dimers with an R 2 (2)(8) ring motif.

View Article and Find Full Text PDF

In the title compound, C13H19NO2, the dioxane ring adopts a chair conformation and its mean plane makes a dihedral angle of 45.36 (8)° with the phenyl ring. In the crystal, mol-ecules are linked by pairs of N-H⋯O hydrogen bonds, forming inversion dimers with R (2) 2(12) ring motifs.

View Article and Find Full Text PDF

In the title compound, C12H16FNO3, the dioxane ring adopts a chair conformation with the methyl groups and amine N atom in equatorial positions. The best plane through the dioxane ring makes a dihedral angle of 43.16 (8)° with the phenyl ring.

View Article and Find Full Text PDF

Interleukin-2-inducible T-cell kinase (ITK) is a key member of the Tec family of non-receptor tyrosine kinases, and has been found to be a novel target for a number of inflammatory and autoimmune diseases. A three-dimensional pharmacophore model has been generated for protein ITK from its known inhibitors. The best HypoGen model consisted of four pharmacophore features: one hydrogen bond acceptor, one hydrogen bond donor and two hydrophobic rings.

View Article and Find Full Text PDF

The best ZAP-70 inhibitor model consists of four-pharmacophore features, (1) one hydrogen bond acceptor, (2) one hydrogen bond donor (3) one hydrophobic aliphatic and (4) one hydrophobic aromatic features. This model was validated against 110 known ZAP-70 inhibitors with a correlation of 0.902 as well as enrichment factor of 1.

View Article and Find Full Text PDF

Monoamine Oxidase B interaction with known ligands was investigated using combined pharmacophore and structure based modeling approach. The docking results suggested that the pharmacophore and docking models are in good agreement and are used to identify the selective MAO-B inhibitors. The best model, Hypo2 consists of three pharmacophore features, i.

View Article and Find Full Text PDF

Quantitative structure-activity relationship (QSAR) analysis was performed on a series of 1,3-diaryl-4,5,6,7-tetrahydro-2H-isoindole for their cyclooxygenase-2 (COX-2) inhibition. QSAR investigations were based on Hansch's extra thermodynamic multi-parameter approach and receptor surface analysis (RSA). QSAR investigations reveal that steric and electrostatic interactions are primarily responsible for COX-2 enzyme-ligand interaction.

View Article and Find Full Text PDF

Histone deacetylase is one of the important targets in the treatment of solid tumors and hematological cancers. A total of 20 well-defined inhibitors were used to generate Pharmacophore models using and HypoGen module of Catalyst. These 20 molecules broadly represent 3 different chemotypes.

View Article and Find Full Text PDF

Protein farnesyltransferase (FTase) is a zinc-dependent enzyme that catalyzes the attachment of a farnesyl lipid group to the sulfur atom of a cysteine residue of numerous proteins involved in cell signaling including the oncogenic H-Ras protein. Pharmacophore models were developed by using Catalyst HypoGen program with a training set of 22 farnesyltransferase inhibitors (FTIs), which were carefully selected with great diversity in both molecular structure and bioactivity for discovering new potent FTIs. The best pharmacophore hypothesis (Hypo 1), consisting of four features, namely, one hydrogen-bond acceptor (HBA), one hydrophobic point (HY), and two ring aromatics (RA), has a correlation coefficient of 0.

View Article and Find Full Text PDF

We have performed a ligand coordinate analysis to monitor the movement of the inhibitor SC-558 from the active site of the COX-2 protein to the exterior using molecular dynamics techniques. This study provides an insight into the intermolecular interactions formed by the ligand during this journey. The published crystal structure of COX-2 with SC-558 in the active site (1cx2) was taken, and the ligand was moved incrementally in 13 steps.

View Article and Find Full Text PDF

Virtual Screening (VS) is a computational technique that allows selection and ranking of possible hits from a library of compounds. We have carried out VS on 128 selected EGFR kinase inhibitors with GOLD and LigandFit. From the experimental crystal structure of the erlotinib-EGFR complex, three key hydrogen bonds were identified as responsible for anchoring the ligand in the active site.

View Article and Find Full Text PDF

Three-dimensional quantitative structure-activity relationship (3D-QSAR) models were developed for 100 anilinoquinazolines, inhibiting epidermal growth factor receptor (EGFR) kinase. The studies included molecular field analysis (MFA) and receptor surface analysis (RSA). The cross-validated r2 (r2cv) values are 0.

View Article and Find Full Text PDF

3D-QSAR studies using MFA and RSA methods were performed on a series of 39MMP-13 inhibitors. Model developed by MFA method has a r(2)(cv) (cross-validated) of 0.616 while its r(2) (conventional) value is 0.

View Article and Find Full Text PDF