Human apoptosis-linked gene-2 interacting protein X (ALIX), a versatile adapter protein, regulates essential cellular processes by shuttling between late endosomal membranes and the cytosol, determined by its interactions with Src kinase. Here, we investigate the molecular basis of these transitions and the effects of tyrosine phosphorylation on the interplay between structure, assembly, and intramolecular and intermolecular interactions of ALIX. As evidenced by transmission electron microscopy, fluorescence and circular dichroism spectroscopy, the proline-rich domain of ALIX, which encodes binding epitopes of multiple cellular partners, formed rope-like β-sheet-rich reversible amyloid fibrils that dissolved upon Src-mediated phosphorylation and were restored on protein-tyrosine phosphatase 1B-mediated dephosphorylation of its conserved tyrosine residues.
View Article and Find Full Text PDFInsulin-degrading enzyme (IDE) hydrolyzes monomeric polypeptides, including amyloid-β (Aβ) and HIV-1 p6. It also acts as a nonproteolytic chaperone to prevent Aβ polymerization. Here we compare interactions of Aβ and non-amyloidogenic p6 with IDE.
View Article and Find Full Text PDFNuclear magnetic resonance spectroscopy studies of ever larger systems have benefited from many different forms of isotope labeling, in particular, site specific isotopic labeling. Site specific C labeling of methyl groups has become an established means of probing systems not amenable to traditional methodology. However useful, methyl reporter sites can be limited in number and/or location.
View Article and Find Full Text PDFA composite made from hollow polyhedron copper oxide and graphene oxide was synthesized by sintering a Cu-based metal-organic framework (Cu-MOF) embedded with exfoliated graphene oxide. As a proof-of-concept application, the obtained Cu(ox)-rGO materials were used in a lithium-ion battery and a sodium-ion battery as anode materials. Overall, the Cu(ox)-rGO composite delivers excellent electrochemical properties with stable cycling when compared to pure CuO-rGO and Cu-MOF.
View Article and Find Full Text PDFOxidative decomposition of aqueous organic pollutant malachite green (MG) was studied in a dielectric barrier discharge reactor operated under ambient conditions. Total organic carbon content analysis confirmed the mineralization of the pollutant leading to the formation of carbon dioxide, which was confirmed by an infrared analyzer. Typical results indicated that the degradation rate increases with increasing applied voltage and decreases with increasing concentration.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
June 2013
Activated carbons (ACs) were developed from bio-waste materials like rice husk and peanut shell (PS) by various physicochemical activation methods. PS char digested in nitric acid followed by treatment at 673 K resulted in high surface area up to ∼585 m(2)/g. The novelty of the present study is the identification of oxygen functional groups formed on the surface of activated carbons by infrared and X-ray photoelectron spectroscopy and quantification by using temperature programmed decomposition (TPD).
View Article and Find Full Text PDFTotal oxidation of mixture of dilute volatile organic compounds was carried out in a dielectric barrier discharge reactor with various transition metal oxide catalysts integrated in-plasma. The experimental results indicated the best removal efficiencies in the presence of metal oxide catalysts, especially MnO(x), whose activity was further improved with AgO(x) deposition. It was confirmed water vapor improves the efficiency of the plasma reactor, probably due to the formation of hydroxyl species, whereas, in situ decomposition of ozone on the catalyst surface may lead to nascent oxygen.
View Article and Find Full Text PDF