Publications by authors named "Ramanathan Arunachalam"

This study introduces a biomimetic approach to 3D printing multilayered hierarchical porous membranes (MHMs) using Direct Ink Writing (DIW) technology. Fabricated through a fast layer-by-layer printing process with varying concentrations of pore-forming agents, the produced MHMs mimic the hierarchical pore structure and filtration capabilities of natural soil systems. As a result, the 3D-printed MHMs achieved an impressive oil rejection rate of 99.

View Article and Find Full Text PDF

Additive manufacturing known as 3D printing has transformed the material landscape, with intricate structures and rapid prototyping for modern production. While nanoscale 3D printing has made significant progress, a critical challenge remains in the rapid, high-throughput tailoring of complex nanostructures. Here, we present a 3D printing-facilitated, light-driven assembly technology for rapid surface patterning consisting of complex particle nanonetworks with balanced fabrication resolution and processing scalability.

View Article and Find Full Text PDF

3D printing, also known as additive manufacturing, holds immense potential for rapid prototyping and customized production of functional health-related devices. With advancements in polymer chemistry and biomedical engineering, polymeric biomaterials have become integral to 3D-printed biomedical applications. However, there still exists a bottleneck in the compatibility of polymeric biomaterials with different 3D printing methods, as well as intrinsic challenges such as limited printing resolution and rates.

View Article and Find Full Text PDF

Coal, a crucial natural resource traditionally employed for generating carbon-rich materials and powering global industries, has faced escalating scrutiny due to its adverse environmental impacts outweighing its utility in the contemporary world. In response to the worldwide shift toward sustainability, the United States alone has witnessed an approximate 50% reduction in coal consumption. Nevertheless, the ample availability of coal has spurred interest in identifying alternative sustainable applications.

View Article and Find Full Text PDF

Plastics' long degradation time and their role in adding millions of metric tons of plastic waste to our oceans annually present an acute environmental challenge. Handling end-of-life waste from wind turbine blades (WTBs) is equally pressing. Currently, WTB waste often finds its way into landfills, emphasizing the need for recycling and sustainable solutions.

View Article and Find Full Text PDF

Nanoparticles form long-range micropatterns via self-assembly or directed self-assembly with superior mechanical, electrical, optical, magnetic, chemical, and other functional properties for broad applications, such as structural supports, thermal exchangers, optoelectronics, microelectronics, and robotics. The precisely defined particle assembly at the nanoscale with simultaneously scalable patterning at the microscale is indispensable for enabling functionality and improving the performance of devices. This article provides a comprehensive review of nanoparticle assembly formed primarily via the balance of forces at the nanoscale (e.

View Article and Find Full Text PDF

Lithium-ion batteries (LIBs) have significantly impacted the daily lives, finding broad applications in various industries such as consumer electronics, electric vehicles, medical devices, aerospace, and power tools. However, they still face issues (i.e.

View Article and Find Full Text PDF

Background: Approximately 1 in 5 American adults experience mental illness every year. Thus, mobile phone-based mental health prediction apps that use phone data and artificial intelligence techniques for mental health assessment have become increasingly important and are being rapidly developed. At the same time, multiple artificial intelligence-related technologies (eg, face recognition and search results) have recently been reported to be biased regarding age, gender, and race.

View Article and Find Full Text PDF