Publications by authors named "Ramanamurthy Mylavarapu"

In recent decades, vagus nerve stimulation (VNS) therapy has become widely used for clinical applications including epilepsy, depression, and enhancing the effects of rehabilitation. However, several questions remain regarding optimization of this therapy to maximize clinical outcomes. Although stimulation parameters such as pulse width, amplitude, and frequency are well studied, the timing of stimulation delivery both acutely (with respect to disease events) and chronically (over the timeline of a disease's progression) has generally received less attention.

View Article and Find Full Text PDF

The common marmoset has been increasingly used in neural interfacing studies due to its smaller size, easier handling, and faster breeding compared to Old World non-human primate (NHP) species. While assessment of cortical anatomy in marmosets has shown strikingly similar layout to macaques, comprehensive assessment of electrophysiological properties underlying forelimb reaching movements in this bridge species does not exist. The objective of this study is to characterize electrophysiological properties of signals recorded from the marmoset primary motor cortex (M1) during a reach task and compare with larger NHP models such that this smaller NHP model can be used in behavioral neural interfacing studies.

View Article and Find Full Text PDF

Objective: Spinal cord injury remains an ailment with no comprehensive cure, and affected patients suffer from a greatly diminished quality of life. This large population could significantly benefit from prosthetic technologies to replace missing limbs, reanimate nonfunctional limbs, and enable new modes of technologies to restore muscle control and function. While cortically driven brain machine interfaces have achieved great success in interfacing with an external device to restore lost functions, interfacing with the spinal cord can provide an additional site to record motor control signals, which can have its own advantages, despite challenges from using a smaller non-human primate (NHP) model.

View Article and Find Full Text PDF

Current neuroprosthetics rely on stable, high quality recordings from chronically implanted microelectrode arrays (MEAs) in neural tissue. While chronic electrophysiological recordings and electrode failure modes have been reported from rodent and larger non-human primate (NHP) models, chronic recordings from the marmoset model have not been previously described. The common marmoset is a New World primate that is easier to breed and handle compared to larger NHPs and has a similarly organized brain, making it a potentially useful smaller NHP model for neuroscience studies.

View Article and Find Full Text PDF

Background: The common marmoset (Callithrix jacchus) has been proposed as a suitable bridge between rodents and larger primates. They have been used in several types of research including auditory, vocal, visual, pharmacological and genetics studies. However, marmosets have not been used as much for behavioral studies.

View Article and Find Full Text PDF