Publications by authors named "Ramanaiah S"

Producing food by farming and subsequent food manufacturing are central to the world's food supply, accounting for more than half of all production. Production is, however, closely related to the creation of large amounts of organic wastes or byproducts (agro-food waste or wastewater) that negatively impact the environment and the climate. Global climate change mitigation is an urgent need that necessitates sustainable development.

View Article and Find Full Text PDF

Bacteria make a huge contribution to the purification of the environment from toxic stable pollutants of anthropogenic and natural origin due to the diversity of their enzyme systems. For example, the ability to decompose 3-chlorobenzoate (3CBA) by the four representative genera of Actinobacteria, such as , , , and , was studied. In most cases, the formation of 4-chlorocatechol as the only key intermediate during the decomposition of 3CBA was observed.

View Article and Find Full Text PDF

Synthetic plastics derived from fossil fuels-such as polyethylene, polypropylene, polyvinyl chloride, and polystyrene-are non-degradable. A large amount of plastic waste enters landfills and pollutes the environment. Hence, there is an urgent need to produce biodegradable plastics such as polyhydroxyalkanoates (PHAs).

View Article and Find Full Text PDF

The use of renewable energy sources as a substitute for nonrenewable fossil fuels is urgently required. Algae biorefinery platform provides an excellent alternate to overcome future energy problems. However, to let this viable biomass be competent with existing feedstocks, it is necessary to exploit genetic manipulation and improvement in upstream and downstream platforms for optimal bio-product recovery.

View Article and Find Full Text PDF

Anaerobic digestion (AD) is a biological process that can be used to treat a wide range of carbon-rich wastes and producerenewable, green energy. To maximize energy recovery from various resources while controlling inhibitory chemicals, notwithstanding AD's efficiency, many limitations must be addressed. As a result, bioelectrochemical systems (BESs) have emerged as a hybrid technology, extensively studied to remediate AD inhibitory chemicals, increase AD operating efficacy, and make the process economically viable via integration approaches.

View Article and Find Full Text PDF

Microalgae have a number of intriguing characteristics that make them a viable raw material aimed at usage in a variety of applications when refined using a bio-refining process. They offer unique capabilities that allow them to be used in biotechnology-related applications. As a result, this review explores how to increase the extent to which microalgae may be integrated with various additional biorefinery uses in order to improve their maintainability.

View Article and Find Full Text PDF

In the present work, power generation and substrate removal efficiencies of long-term operated microbial fuel cells, containing abiotic cathodes and biocathodes, were evaluated for 220 days. Among the two microbial fuel cell (MFC) types, the one containing biocathode showed higher power density (54 mW/m), current density (122 mA/m) coulombic efficiency (33%), and substrate removal efficiency (94%) than the abiotic cathode containing MFC. Voltammetric analysis also witnessed higher and sustainable electron discharge for the MFC with biocathode, when compared with the abiotic cathode MFC.

View Article and Find Full Text PDF

Fluoride concentrations in surface and ground water samples were determined in eight villages of Prakasham district in India. Thirty-eight samples were collected and analysed for fluoride content along with pH, electrical conductivity, total dissolved solids (TDS), total hardness, total alkalinity, chlorides (C1), sulfates (SO2-) and nitrates (NO ). Fluoride concentrations in surface and ground water samples of these villages varied between 0.

View Article and Find Full Text PDF

This communication presents results pertaining to the adsorptive studies carried out on fluoride removal onto algal biosorbent (Spirogyra IO2). Batch sorption studies were performed and the results revealed that biosorbent demonstrated ability to adsorb the fluoride. Influence of varying the conditions for removal of fluoride, such as the fluoride concentration, the pH of aqueous solution, the dosage of adsorbent, the temperature on removal of fluoride, and the adsorption-desorption studies were investigated.

View Article and Find Full Text PDF

Non-viable algal Spirogyra IO1 was studied for its fluoride sorption potential in batch studies. The results demonstrated the ability of the biosorbent for fluoride removal. The sorption interaction of fluoride on to non-viable algal species obeyed the pseudo-first-order rate equation.

View Article and Find Full Text PDF

A rapid, highly sensitive and selective spectrophotometric method for the determination of traces of selenium(IV) is described. The method is based on oxidation of p-nitroaniline by selenium(IV) followed by coupling reaction with N-(1-naphthalene-1-yl)ethane-1,2-diamine dihydrochloride (NEDA) in neutral medium to give red colored derivative with lambda(max) 515 nm and is stable for more than 10 days at 35 degrees C. Beer's law is obeyed for selenium(IV) in the concentration range of 0.

View Article and Find Full Text PDF

The feasibility of laccase production by immobilization of Pleurotus ostreatus 1804 on polyurethane foam (PUF) cubes with respect to media composition was studied in both batch and reactor systems. Enhanced laccase yield was evidenced due to immobilization. A relatively high maximum laccase activity of 312.

View Article and Find Full Text PDF