Publications by authors named "Ramana Vaka"

Background: Extracellular vesicles (EVs) isolated from human heart-derived cells have shown promise in suppressing inflammation and fibroblast proliferation. However, their precise benefits in atrial fibrillation (AF) prevention and the role of their antifibrotic/anti-inflammatory properties remain unclear.

Objectives: The purpose of this study was to conduct a head-to-head comparison of antiarrhythmic strategies to prevent postoperative AF using a rat model of sterile pericarditis.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) from human explant-derived cells injected directly into the atria wall muscle at the time of open chest surgery reduce atrial fibrosis, atrial inflammation, and atrial fibrillation (AF) in a rat model of sterile pericarditis. Albeit a promising solution to prevent postoperative AF, the mechanism(s) underlying this effect are unknown and it is not clear if this benefit is dependent on EV dose. To determine the dose-efficacy relationship of EVs from human explant-derived cells in a rat model of sterile pericarditis.

View Article and Find Full Text PDF

Almost half of patients recovering from open-chest surgery experience atrial fibrillation (AF) that results principally from inflammation in the pericardial space surrounding the heart. Given that postoperative AF is associated with increased mortality, effective measures to prevent AF after open-chest surgery are highly desirable. In this study, we tested the concept that extracellular vesicles (EVs) isolated from human atrial explant-derived cells can prevent postoperative AF.

View Article and Find Full Text PDF

The cell origin-specific payloads within extracellular vesicles (EVs) mediate therapeutic bioactivity for a wide variety of stem cell types. In this study, we profiled the microRNA (miRNA) and protein cargos found within EVs produced by three clinical-grade stem cell products of different ontogenies being considered for clinical application, namely bone marrow-derived mesenchymal stromal cells (BM-MSCs), heart-derived cells (HDCs), and umbilical cord-derived MSCs (UC-MSCs). Although several miRNAs (757) and proteins (420) were found in common, each producer cell type expressed unique miRNA profiles when the most highly expressed transcripts were compared.

View Article and Find Full Text PDF

Despite considerable research efforts over the past few decades, the pathology of preeclampsia (PE) remains poorly understood with no new FDA-approved treatments. There is a substantial amount of work being conducted by investigators around the world to identify targets to develop therapies for PE. Oxidative stress has been identified as one of the crucial players in pathogenesis of PE and has garnered a great deal of attention by several research groups including ours.

View Article and Find Full Text PDF

Background: Although 90% of infections with the novel coronavirus 2 (COVID-19) are mild, many patients progress to acute respiratory distress syndrome (ARDS) which carries a high risk of mortality. Given that this dysregulated immune response plays a key role in the pathology of COVID-19, several clinical trials are underway to evaluate the effect of immunomodulatory cell therapy on disease progression. However, little is known about the effect of ARDS associated pro-inflammatory mediators on transplanted stem cell function and survival, and any deleterious effects could undermine therapeutic efficacy.

View Article and Find Full Text PDF
Article Synopsis
  • - Preeclampsia (PE) is a pregnancy condition marked by high blood pressure and linked to oxidative stress and mitochondrial dysfunction, particularly affected by factors like autoantibodies and immune cells.
  • - The study investigated mitochondrial function in placentas from PE patients compared to normal pregnancies, finding that mitochondrial respiration rates and certain enzyme activities were significantly impaired in PE placentas, especially in those delivered before 34 weeks.
  • - Results showed that mitochondrial reactive oxygen species (mtROS) levels were lower in both preterm and term PE placentas compared to normal controls, suggesting that using antioxidants as a treatment for oxidative stress in PE may not be effective.
View Article and Find Full Text PDF

Cardiovascular disease is the primary cause of death around the world. For almost two decades, cell therapy has been proposed as a solution for heart disease. In this article, we report on the "state-of-play" of cellular therapies for cardiac repair and regeneration.

View Article and Find Full Text PDF

Background: Preeclampsia is characterized by a new onset of hypertension during pregnancy and is associated with autoantibodies against the angiotensin II type 1 receptor and oxidative stress. There is growing evidence for mitochondrial dysfunction in preeclampsia, however, the culprits for mitochondrial dysfunction are still being defined. We previously demonstrated that angiotensin II type 1 autoantibodies cause renal, placental, and endothelial mitochondrial dysfunction in pregnant rats.

View Article and Find Full Text PDF