Publications by authors named "Raman Soni"

Coronaviruses are a diverse family of viruses, and new strains can emerge. While the majority of coronavirus strains cause mild respiratory illnesses, a few are responsible for severe diseases such as Severe Acute Respiratory Syndrome (SARS) and Middle East Respiratory Syndrome (MERS). SARS-CoV-2, the virus responsible for COVID-19, is an example of a coronavirus that has led to a pandemic.

View Article and Find Full Text PDF

Green technology has been developed for the quick production of stabilized silver nanoparticles (AgNPs), with the assistance of nitrate reductase from an isolated culture of Aspergillus terreus N4. The organism's intracellular and periplasmic fractions contained nitrate reductase, with the former demonstrating the highest activity of 0.20 IU/g of mycelium.

View Article and Find Full Text PDF

Rapid depletion of fossil fuels worldwide presents a dire situation demanding a potential replacement to surmount the current energy crisis. Lignocellulose presents a logical candidate to be exploited at industrial scale owing to its vast availability, inexpensive and renewable nature. Microbial degradation of lignocellulosic biomass is a lucrative, sustainable, and promising approach to obtain valuable commercial commodities at gigantic scale.

View Article and Find Full Text PDF

A natural variant of Pyrenophora phaeocomes isolated from natural biodiversity was able to grow on various agricultural residues by co-producing laccase, xylanase and mannanase. Solid state fermentation of rice straw induced the highest productivities corresponding to 10,859.51±46.

View Article and Find Full Text PDF

Microbial cellulases have been receiving worldwide attention, as they have enormous potential to process the most abundant cellulosic biomass on this planet and transform it into sustainable biofuels and other value added products. The synergistic action of endoglucanases, exoglucanases, and β-glucosidases is required for the depolymerization of cellulose to fermentable sugars for transformation in to useful products using suitable microorganisms. The lack of a better understanding of the mechanisms of individual cellulases and their synergistic actions is the major hurdles yet to be overcome for large-scale commercial applications of cellulases.

View Article and Find Full Text PDF

Optimization of cultural conditions for enhanced cellulase production by Aspergillus niger NS-2 were studied under solid-state fermentation. Significant increase in yields (CMCase 463.9 ± 20.

View Article and Find Full Text PDF

Various agricultural and kitchen waste residues were assessed for their ability to support the production of a complete cellulase system by Aspergillus niger NS-2 in solid state fermentation. Untreated as well as acid and base-pretreated substrates including corn cobs, carrot peelings, composite, grass, leaves, orange peelings, pineapple peelings, potato peelings, rice husk, sugarcane bagasse, saw dust, wheat bran, wheat straw, simply moistened with water, were found to be well suited for the organism's growth, producing good amounts of cellulases after 96 h without the supplementation of additional nutritional sources. Yields of cellulases were higher in alkali treated substrates as compared to acid treated and untreated substrates except in wheat bran.

View Article and Find Full Text PDF