Publications by authors named "Ramamoorthy Rajkumar"

Rare-earth-doped oxides are a class of compounds that have been largely studied in the context of the development of luminescent nanocrystals for various applications including fluorescent labels for bioimaging, MRI contrast agents, luminescent nanocomposite coatings, etc. Elaboration of colloidal suspensions is usually achieved through coprecipitation. Particles exhibit emission properties that are similar to the bulk counterparts, although altered by crystalline defects or surface quenching species.

View Article and Find Full Text PDF

Patients with paralysis, spinal cord injury, or amputated limbs could benefit from using brain-machine interface technology for communication and neurorehabilitation. In this study, a 32-channel three-dimensional (3D) multielectrode probe array was developed for the neural interface system of a brain-machine interface to monitor neural activity. A novel microassembly technique involving lead transfer was used to prevent misalignment in the bonding plane during the orthogonal assembly of the 3D multielectrode probe array.

View Article and Find Full Text PDF

Background: is one of the most commonly used medicinal herbs worldwide for a variety of therapeutic properties including neurocognitive effects. Ginsenoside Rg1 is one of the most abundant active chemical constituents of this herb with known neuroprotective, anxiolytic, and cognition improving effects.

Methods: We investigated the effects of Rg1 on the medial prefrontal cortex (mPFC), a key brain region involved in cognition, information processing, working memory, and decision making.

View Article and Find Full Text PDF

Olfactory bulbectomy (OBX) has been used as a model of depression over several decades. This model presupposes a mechanism that is still not proven in clinical depression. A wealth of clinical literature has focused on the derangements in frontal cortex (prefrontal, orbitofrontal and anterior cingulate cortices) associated with depression.

View Article and Find Full Text PDF

Unlabelled: Relaxin-3 has been proposed to modulate emotional-behavioural functions such as arousal and behavioural activation, appetite regulation, stress responses, anxiety, memory, sleep and circadian rhythm. The nucleus incertus (NI), in the midline tegmentum close to the fourth ventricle, projects widely throughout the brain and is the primary site of relaxin-3 neurons. Over recent years, a number of preclinical studies have explored the function of the NI and relaxin-3 signalling, including reports of mRNA or peptide expression changes in the NI in response to behavioural or pharmacological manipulations, effects of lesions or electrical or pharmacological manipulations of the NI, effects of central microinfusions of relaxin-3 or related agonist or antagonist ligands on physiology and behaviour, and the impact of relaxin-3 gene deletion or knockdown.

View Article and Find Full Text PDF

The nucleus incertus (NI), a brainstem structure with diverse anatomical connections, is implicated in anxiety, arousal, hippocampal theta modulation, and stress responses. It expresses a variety of neurotransmitters, neuropeptides and receptors such as 5-HT1A, D2 and CRF1 receptors. We hypothesized that the NI may play a role in the neuropharmacology of buspirone, a clinical anxiolytic which is a 5-HT1A receptor partial agonist and a D2 receptor antagonist.

View Article and Find Full Text PDF

Priming phenomenon, in which an earlier exposure to a stimulus or condition alters synaptic plasticity in response to a subsequent stimulus or condition, known as a challenge, is an example of metaplasticity. In this review, we make the case that the locus coeruleus noradrenergic system-medial perforant path-dentate gyrus pathway is a neural ensemble amenable to studying priming-challenge effects on synaptic plasticity. Accumulating evidence points to a tyrosine hydroxylase-dependent priming effect achieved by pharmacological (nicotine and antipsychotics) or physiological (septal theta driving) manipulations of the locus coeruleus noradrenergic system that can facilitate noradrenaline-induced synaptic plasticity in the dentate gyrus of the hippocampus.

View Article and Find Full Text PDF

Locomotion is essential for goal-oriented behavior. Theta frequency oscillations in the hippocampus have been associated with behavioral activation and initiation of movement. Recently, the nucleus incertus, a brainstem nucleus with widespread cortical and subcortical projections, has been reported to modulate the septo-hippocampal axis triggering theta activity in the hippocampus.

View Article and Find Full Text PDF

The nucleus incertus (NI) is a small cluster of brainstem neurons presumed to play a role in stress responses. We show that swim stress (normal water: 30 min and cold water: 20 min) and elevation stress robustly induced c-Fos expression in the NI and significantly suppressed long-term potentiation (LTP) in the hippocampo-medial prefrontal cortical (HP-mPFC) pathway. To examine whether activation of CRF1 receptors in the NI plays a role in the suppression of HP-mPFC LTP, antalarmin, a specific CRF1 receptor antagonist, was infused directly into the NI either before presentation of (1) elevation stress or (2) high frequency stimulation.

View Article and Find Full Text PDF

Adaptation of the nervous system to different chemical and physiologic conditions is important for the homeostasis of brain processes and for learning and remembering appropriate responses to challenges. Although processes such as tolerance and dependence to various drugs of abuse have been known for a long time, it was recently discovered that even a single pharmacologically relevant dose of various drugs of abuse induces neuroplasticity in selected neuronal populations, such as the dopamine neurons of the ventral tegmental area, which persist long after the drug has been excreted. Prolonged (self-) administration of drugs induces gene expression, neurochemical, neurophysiological, and structural changes in many brain cell populations.

View Article and Find Full Text PDF

The nucleus incertus (NI), located in the caudal brainstem, mainly consists of GABAergic neurons with widespread projections across the brain. It is the chief source of relaxin-3 in the mammalian brain and densely expresses corticotropin-releasing factor type 1 (CRF1) receptors. Several other neurotransmitters, peptides and receptors are reportedly expressed in the NI.

View Article and Find Full Text PDF

Calcium independent phospholipase A2 (iPLA2) is an 85 kDa protein that catalyzes the hydrolysis of the sn-2 acyl ester bond of glycerophospholipids to liberate free fatty acids and lysophospholipids. In this study, we determined the role of constitutive iPLA2β in long term potentiation (LTP) of the hippocampo-prefrontal cortical pathway in vivo. We also examined the effect of iPLA2β knockdown using the rewarded alternation in T-maze task, a test of spatial working memory which is dependent on this pathway.

View Article and Find Full Text PDF

A novel signal folding and reconstruction scheme for neural recording applications that exploits the 1/f(n) characteristics of neural signals is described in this paper. The amplified output is 'folded' into a predefined range of voltages by using comparison and reset circuits along with the core amplifier. After this output signal is digitized and transmitted, a reconstruction algorithm can be applied in the digital domain to recover the amplified signal from the folded waveform.

View Article and Find Full Text PDF

Neural prosthetics and personal healthcare have increasing need of high channel density low noise low power neural sensor interfaces. The input referred noise and quantization resolution are two essential factors which prevent conventional neural sensor interfaces from simultaneously achieving a good noise efficiency factor and low power consumption. In this paper, a neural recording architecture with dynamic range folding and current reuse techniques is proposed and dedicated to solving the noise and dynamic range trade-off under low voltage low power operation.

View Article and Find Full Text PDF

The nucleus incertus (NI), a brainstem nucleus found in the pontine periventricular grey, is the primary source of the neuropeptide relaxin-3 in the mammalian brain. The NI neurons have also been previously reported to express several receptors and neurotransmitters, including corticotropin releasing hormone receptor 1 (CRF₁) and gamma-aminobutyric acid (GABA). The NI projects widely to putative neural correlates of stress, anxiety, depression, feeding behaviour, arousal and cognition leading to speculation that it might be involved in several neuropsychiatric conditions.

View Article and Find Full Text PDF

The medial prefrontal cortex (mPFC) in the rat has been implicated in a variety of cognitive processes, including working memory and expression of fear memory. We investigated the inputs from a brain stem nucleus, the nucleus incertus (NI), to the prelimbic area of the mPFC. This nucleus strongly expresses corticotropin-releasing factor type 1 (CRF1 ) receptors and responds to stress.

View Article and Find Full Text PDF

A priming-challenge schedule of nicotine treatment causes long-lasting potentiation (LLP), a form of synaptic plasticity closely associated with the norepinephrine (NE) neurotransmitter system, at the medial perforant path (MPP)-dentate gyrus (DG) synapse in the rat hippocampus. Previous reports revealed that nicotine activates the locus coeruleus (LC) noradrenergic (NAergic) system and this mechanism may underlie its beta-adrenoceptor sensitive LLP effects. Clozapine, an atypical antipsychotic, is also known to activate the LC.

View Article and Find Full Text PDF

A number of atypical antipsychotic drugs are known to perturb appetite regulation causing greater hyperphagia in humans and rodents than earlier generation typical agents. However, the neuronal structures that underlie hyperphagic effects are poorly understood. Arcuate nucleus (ArcN), paraventricular hypothalamic nucleus (PVN), paraventricular thalamic nucleus (PVA) and nucleus incertus (NI) have been implicated in appetite regulation.

View Article and Find Full Text PDF

The aberrant hyperactivation of Cyclin-dependent kinase 5 (Cdk5), by the production of its truncated activator p25, results in the formation of hyperphosphorylated tau, neuroinflammation, amyloid deposition, and neuronal death in vitro and in vivo. Mechanistically, this occurs as a result of a neurotoxic insult that invokes the intracellular elevation of calcium to activate calpain, which cleaves the Cdk5 activator p35 into p25. It has been shown previously that the p25 transgenic mouse as a model to investigate the mechanistic implications of p25 production in the brain, which recapitulates deregulated Cdk5-mediated neuropathological changes, such as hyperphosphorylated tau and neuronal death.

View Article and Find Full Text PDF

The serotonergic mechanisms have been successfully utilized by the majority of antidepressant drug discovery programmes, while the search for newer targets remains persistent. The present review focused on the serotonin type-3 receptor, the only ion channel subtype in the serotonin family. Behavioural, neurochemical, electrophysiological and molecular analyses, including the results from our laboratory, provided substantial evidence that rationalizes the correlation between serotonin type-3 receptor modulation and rodent depressive-like behaviour.

View Article and Find Full Text PDF

Collective evidence suggests that inhibition of neuronal 5-hydroxytryptamine type 2A (5-HT(2A)) receptors contributes to the assuagement of depression-like behaviour in rodents. The present study evaluated the antidepressant-like effect of the 5-((4-benzo [alpha] isothiazol-3-yl) piperazin-1-yl) methyl)-6-chloroindolin-2-one (BIP-1), a compound having affinity to 5-HT(2A) receptors, using a rodent behavioural test battery. Acute BIP-1 (0.

View Article and Find Full Text PDF

Depression and anxiety tend to be the most prevalent conditions among the multitude of neurobehavioural disorders which cause distress in the survivors of traumatic brain injury (TBI). The objective of the present investigation was to examine depression-like and anxiety-like behaviour of rats following diffuse TBI. Impact accelerated TBI was induced in anaesthetised rats by a modified weight drop method.

View Article and Find Full Text PDF

1-(m-Chlorophenyl)piperazine (mCPP) has a fairly complex neuropsychopharmacological profile owing to its affinity to multiple serotonergic receptors. This investigation was designed to establish the effect of mCPP on rodent depression-like behaviour. mCPP was screened in a rodent behavioural test battery comprising of validated antidepressant assays and interaction studies with conventional antidepressants and ligands were carried out in forced swim and tail suspension test (in mice).

View Article and Find Full Text PDF

The anti-serotonergic effects of parthenolide (PTL) demonstrated in platelets inspired the present psychopharmacological investigation, which employs a battery of rodent behavioural assays of depression. In mice, PTL (0.5-2 mg kg(-1)) exhibited dose-dependent depressant-like effects in a forced swim test and a tail suspension test, without affecting the baseline locomotor status.

View Article and Find Full Text PDF

The present behavioural investigation evaluates the antidepressant potential of ondansetron (OND), a widely used (in management of cancer chemotherapy-induced nausea and emesis) 5-HT3 receptor antagonist. Separate groups of mice received acute or chronic treatment of OND (0.005-1000 microg/kg), and were subjected to spontaneous locomotor activity test or antidepressant assays, namely, the forced swim and tail suspension tests.

View Article and Find Full Text PDF

Synopsis of recent research by authors named "Ramamoorthy Rajkumar"

  • - Ramamoorthy Rajkumar's research focuses on the intersection of neuropharmacology, neuropsychology, and materials science, with significant contributions in understanding the role of specific brain regions and chemical agents in neuropsychiatric disorders and synaptic plasticity.
  • - His work includes the investigation of the nucleus incertus and its involvement in anxiety, stress response, and cognitive functions, demonstrating how its modulation can influence neuroplasticity and behavioral responses in various models of mental health.
  • - Rajkumar also explores the development of innovative tools for neurological monitoring and treatment, exemplified by his work on a 32-channel multielectrode array, aiming to enhance brain-machine interface technologies for individuals with motor impairments.