Publications by authors named "Ramakrishnapillai Vyomakesannair Omkumar"

MicroRNAs fine-tune gene regulation and can be targeted for therapeutic purposes. We investigated the physiological roles of miR-146a and miR-200b that are differentially expressed in neurological disorders such as Alzheimer's disease and schizophrenia, particularly in learning and memory mechanisms. Using bioinformatics tools and luciferase assay, we show interaction of these miRNAs with transcripts of N-methyl-D-aspartate receptor (NMDAR) subunits and .

View Article and Find Full Text PDF

Hypofunction of N-methyl-d-aspartate receptors (NMDAR) is a key component in the pathophysiology of schizophrenia. Alterations in the regulation of NMDARs by microRNAs (miRNAs) are possible since numerous miRNAs are differentially expressed in post mortem schizophrenia brain samples. We screened the miRNAs that are altered in schizophrenia against the targets, Grin2A and Grin2B subunits of NMDAR using bioinformatic tools.

View Article and Find Full Text PDF

We isolated an 8 kDa mycobacterial hypothetical protein, Rv3423.1, from the chromatin of human macrophages infected with Mycobacterium tuberculosis H37Rv. Bioinformatics predictions followed by in vitro biochemical assays with purified recombinant protein showed that Rv3423.

View Article and Find Full Text PDF

Interaction of GluN2B subunit of N-methyl-D-aspartate receptor with calcium/calmodulin dependent protein kinase II (CaMKII) is critical for the induction of long term potentiation at hippocampal CA3-CA1 synapses. We have previously reported that CaMKII binding to GluN2B increases its affinity but abolishes the cooperativity for ATP. In the present study, we demonstrate that the reduction in S(0.

View Article and Find Full Text PDF

A novel interfacial route has been developed for the synthesis of a bright-red-emitting new subnanocluster, Au(23), by the core etching of a widely explored and more stable cluster, Au(25)SG(18) (in which SG is glutathione thiolate). A slight modification of this procedure results in the formation of two other known subnanoclusters, Au(22) and Au(33). Whereas Au(22) and Au(23) are water soluble and brightly fluorescent with quantum yields of 2.

View Article and Find Full Text PDF