Objective: Newborn screening for biotinidase deficiency can be performed using a fluorometric enzyme assay on dried blood spot specimens. As a pre-requisite to the consolidation of different enzymatic assays onto a single platform, we describe here a novel analytical method for detecting biotinidase deficiency using the same digital microfluidic cartridge that has already been demonstrated to screen for five lysosomal storage diseases (Pompe, Fabry, Gaucher, Hurler and Hunter) in a multiplex format.
Methods: A novel assay to quantify biotinidase concentration in dried blood spots (DBS) was developed and optimized on the digital microfluidic platform using proficiency testing samples from the Centers for Disease Control and Prevention.
Purpose: New therapies for lysosomal storage diseases (LSDs) have generated interest in screening newborns for these conditions. We present performance validation data on a digital microfluidic platform that performs multiplex enzymatic assays for Pompe, Fabry, Hunter, Gaucher, and Hurler diseases.
Methods: We developed an investigational disposable digital microfluidic cartridge that uses a single dried blood spot (DBS) punch for performing a 5-plex fluorometric enzymatic assay on up to 44 DBS samples.
Objective: Easy tool for newborn screening of Gaucher and Hurler diseases.
Methods: Method comparison between fluorometric enzymatic activity assay on a digital microfluidic platform and micro-titer plate bench assay was performed on normal (n = 100), Gaucher (n = 10) and Hurler (n = 7) dried blood spot samples.
Results: Enzymatic activity analysis of glucocerebrosidase (Gaucher) and α-l-iduronidase (Hurler) revealed similar discrimination between normal and affected samples on both platforms.
Blood Coagul Fibrinolysis
December 2012
Current methods for hypercoagulability panel testing require large blood volumes and long turn-around testing times. A novel microfluidic platform has been designed to perform automated multiplexed hypercoagulability panel testing at near patient, utilizing only a single droplet of blood sample. We test the hypothesis that this novel platform could be utilized to perform specific multiplexed ELISA-based hypercoagulability panel testing for antithrombin III, protein C, protein S and factor VIII antigens, as well as anticardiolipin/human anti-β2-glycoprotein-1 IgG antibodies--on blood samples.
View Article and Find Full Text PDFMucopolysaccharidosis type II (MPS II) or Hunter syndrome is a lysosomal storage disease caused by deficiency of iduronate-2-sulfatase (IDS). A convenient single-step fluorometric microplate enzyme assay has been developed and validated for clinical diagnosis of MPS II using dried blood spots (DBS). The assay compared well with a recently reported digital microfluidic method, from which it was adapted.
View Article and Find Full Text PDFBackground: Newborn screening for lysosomal storage diseases (LSDs) has been gaining considerable interest owing to the availability of enzyme replacement therapies. We present a digital microfluidic platform to perform rapid, multiplexed enzymatic analysis of acid α-glucosidase (GAA) and acid α-galactosidase to screen for Pompe and Fabry disorders. The results were compared with those obtained using standard fluorometric methods.
View Article and Find Full Text PDFExpansion of newborn screening for inherited metabolic disorders using tandem mass spectrometry has generated interest in screening for other treatable conditions, including lysosomal storage diseases. Limitations to expansion include labor and equipment costs. We describe a cost-effective new platform that reduces the time to result reporting and can perform multiplexing assays requiring different platforms.
View Article and Find Full Text PDFA digital microfluidic platform for performing heterogeneous sandwich immunoassays based on efficient handling of magnetic beads is presented in this paper. This approach is based on manipulation of discrete droplets of samples and reagents using electrowetting without the need for channels where the droplets are free to move laterally. Droplet-based manipulation of magnetic beads therefore does not suffer from clogging of channels.
View Article and Find Full Text PDFPoint of care testing is playing an increasingly important role in improving the clinical outcome in health care management. The salient features of a point of care device are rapid results, integrated sample preparation and processing, small sample volumes, portability, multifunctionality and low cost. In this paper, we demonstrate some of these salient features utilizing an electrowetting-based Digital Microfluidic platform.
View Article and Find Full Text PDF