Publications by authors named "Ramakrishna Chopperla"

An extreme temperature regime beyond desired level imposes significant stress in crop plants. The low and high temperature stresses are one of the primary constraints for plant development and yield. Finger millet, being a climate resilient crop, is a potential source of novel stress tolerant genes.

View Article and Find Full Text PDF

MicroRNAs regulate plant responses to fungal infections and immunity. In this study, miRNAs were identified in six rice cultivars during a Kühn AG1-IA infection using a deep sequencing approach. Known and novel miRNAs were analyzed in these rice cultivars, and a set of fungal infection/immunity-associated miRNAs and target genes were quantified by reverse transcription (RT)-qPCR in six rice cultivars.

View Article and Find Full Text PDF

Sheath blight disease of rice caused by Kühn (teleomorph: ) remains a global challenge due to the absence of reliable resistance genes and poor understanding of pathogen biology. Pectin, one of the most vital constituents of the plant cell wall, is targeted by pectin methylesterases, polygalacturonases, and few other enzymes of fungal pathogens. In this study, we catalogued the expressed genes of the fungal genome from RNAseq of infected four rice genotypes.

View Article and Find Full Text PDF

RNAi mediated silencing of pectin degrading enzyme of R. solani gives a high level of resistance against sheath blight disease of rice. Rice sheath blight disease caused by Rhizoctonia solani Kuhn (telemorph; Thanatephorus cucumeris) is one of the most devastating fungal diseases which cause severe loss to rice grain production.

View Article and Find Full Text PDF

The occurrence of various stresses, as the outcome of global climate change, results in the yield losses of crop plants. Prospecting of genes in stress tolerant plant species may help to protect and improve their agronomic performance. Finger millet (Eleusine coracana L.

View Article and Find Full Text PDF

Basic leucine zipper (bZIP) transcription factors comprise one of the largest gene families in plants. They play a key role in almost every aspect of plant growth and development and also in biotic and abiotic stress tolerance. In this study, we report isolation and characterization of , a group B bZIP transcription factor from a climate smart cereal, finger millet ( L.

View Article and Find Full Text PDF

Highly tolerant herbicide-resistant transgenic rice was developed by expressing codon-modified synthetic CP4--EPSPS. The transformants could tolerate up to 1% commercial glyphosate and has the potential to be used for DSR (direct-seeded rice). Weed infestation is one of the major biotic stress factors that is responsible for yield loss in direct-seeded rice (DSR).

View Article and Find Full Text PDF