With a growing global population and ageing demographics, the food industry stands at a pivotal crossroads, necessitating bespoke solutions and groundbreaking innovations. In vitro experiments can help understanding food oral processing and formulating products meeting the specific needs of different populations. However, current in vitro models do not reproduce well human oral anatomy and tongue biomechanics, essential for assessing the behaviour of novel and texturized foods under physiologically relevant oral conditions.
View Article and Find Full Text PDFDesigning plant protein-based aqueous lubricants can be of great potential to achieve sustainability objectives by capitalising on inherent functional groups without using synthetic chemicals; however, such a concept remains in its infancy. Here, we engineer a class of self-assembled sustainable materials by using plant-based protofilaments and their assembly within a biopolymeric hydrogel giving rise to a distinct patchy architecture. By leveraging physical interactions, this material offers superlubricity with friction coefficients of 0.
View Article and Find Full Text PDFThe prevalence of xerostomia, the sensation of dry mouth, is estimated at 20 % in the general population and up to 50 % in older adults. Saliva plays different roles during bolus formation: lubrication, mixing, coating, hydration, dissolution, and comminution of food particles. This study proposes and tests artificial saliva formulations mimicking human saliva rheological and sensory perceptions.
View Article and Find Full Text PDFSaliva facilitates food oral processing, bolus formation, swallowing, and sensory perception, in addition to contributing to oral health and phonation. Ageing, health affections, and polymedication are among many causes altering salivary production, modifying the mastication process, the food impregnation ratio, and in turn altering the characteristics of the bolus, swallowing, and digestion. In this in vitro work, using the AM masticator apparatus, which replicates the mechanical actions taking place while chewing solid foods and produces realistic food bolus in various oral conditions, we investigated the effect of salivary fluid characteristics, i.
View Article and Find Full Text PDFXerostomia, the subjective sensation of 'dry mouth' affecting at least 1 in 10 adults, predominantly elders, increases life-threatening infections, adversely impacting nutritional status and quality of life. A patented, microgel-reinforced hydrogel-based aqueous lubricant, prepared using either dairy or plant-based proteins, has been demonstrated to offer substantially enhanced lubricity comparable to real human saliva in in vitro experiments. Herein, we present the benchmarking of in vitro lubrication performance of this aqueous lubricant, both in its dairy and vegan formulation against a range of widely available and employed commercial saliva substitutes, latter classified based on their shear rheology into "liquids", "viscous liquids" and "gels", and also had varying extensional properties.
View Article and Find Full Text PDFThere is a growing interest in enhancing the acceptability of paediatric pharmaceutical formulations. Solid oral dosage forms (SODF), especially multiparticulates, are being considered as an alternative to liquid formulations, but they may compromise palatability when large volumes are required for dosing. We hypothesised that a binary mixture of multiparticulates for paediatric use, designed to increase the formulation maximum packing fraction, could reduce the viscosity of the mixture in soft food and facilitate swallowing.
View Article and Find Full Text PDFSoft robotics could help providing a better understanding of the mechanisms underpinning the swallowability of solid oral dosage forms (SODF), especially by vulnerable populations such as the elderly or children. In this study a novel soft robotic in vitro device is presented, the Pediatric Soft Robotic Tongue (PSRT), inspired by the literature data on the anatomy and physiology of a 2-year-old child. Multi-particulate oral formulations (i.
View Article and Find Full Text PDFThe shape of a liquid-air interface advancing on a heterogeneous surface was studied experimentally, together with the force induced by the pinning of the contact line to surface defects. Different surfaces were considered with circular defects introduced as arrays of cocoa butter patches or small circular holes. These heterogeneous surfaces were submerged in aqueous ethanol solutions while measuring the additional force arising from the deformation of the advancing contact line and characterizing the interface shape and its pinning on the defects.
View Article and Find Full Text PDFThe objective of this study was to investigate quantitatively the impact of saliva on the rheological properties of thickened drinks (IDDSI level 3) with different pH. Oral digestion was simulated and followed using a rheometer. An insalivation ratio measured from spitted boli, was used in the in vitro oral digestion experiments, comparing unstimulated human saliva to artificial saliva.
View Article and Find Full Text PDFSolid oral dosage forms (SODF) are the most popular oral drug delivery forms, but they can be difficult to swallow, especially for patients suffering from swallowing disorders. This study investigated the dynamics of different combinations of liquid carriers and SODF during the oral phase of swallowing using an in vitro model. The rheological properties of the carriers were characterized using shear and extensional rheometry, and their effect on bolus velocity, bolus shape, post-swallow residues, and SODF position within the bolus was evaluated.
View Article and Find Full Text PDFSwallowing disorders deteriorate significantly the quality of life and can be life-threatening. Texture modification using shear thinning food thickeners has been proven to be effective in the management of dysphagia. Some studies have recently considered the positive role of cohesiveness, but there is still an insufficient understanding of the effect of the rheological properties of the liquid bolus on the dynamics of bolus transport, particularly when elasticity and extensional properties are combined with a shear thinning behaviour.
View Article and Find Full Text PDFThis study considers the consequences of adding grains to an air-liquid interface from a funnel. Depending on the grain contact angle and liquid surface tension, the interface is found to support a single or multiple layers of grains, forming a granular stack. By continuing to add grains, the stacks grow until either the lower grains disperse in the liquid, or the complete stack breaks free from the surface and sinks as a dry powder lump.
View Article and Find Full Text PDFFlexible dosing and ease of swallowing are key factors when designing oral drug delivery systems for paediatric and geriatric populations. Multi-particulate oral dosage forms can offer significant benefits over conventional capsules and tablets. This study proposes the use of an in vitro model to quantitatively investigate the swallowing dynamics in presence of multi-particulates.
View Article and Find Full Text PDFMinimal processing for microbial decontamination, such as the use of natural antimicrobials, is gaining interest in the food industry as these methods are generally milder than conventional processing, therefore better maintaining the nutritional content and sensory characteristics of food products. The aim of this study was to quantify the impact of (i) structural composition and complexity, (ii) growth location and morphology, and (iii) the natural antimicrobial nisin, on the microbial dynamics of Listeria innocua. More specifically, viscoelastic food model systems of various compositions and internal structure were developed and characterised, i.
View Article and Find Full Text PDFThe compliance of patients to solid oral dosage forms is strongly conditioned by the perceived ease of swallowing, especially in geriatric and pediatric populations. This study proposes a method, based on an in vitro model of the human oropharyngeal cavity, to study quantitatively the oral phase of human swallowing in presence of single or multiple tablets. The dynamics of swallowing was investigated varying the size and shape of model tablets and adjusting the force applied to the mechanical setup to simulate tongue pressure variations among individuals.
View Article and Find Full Text PDFPredictive simulations of the mastication system would significantly improve our understanding of temporomandibular joint (TMJ) disorders and the planning of cranio-maxillofacial surgery procedures. Respective computational models must be validated by experimental data from in vivo characterization of the mastication system's mechanical response. The present pilot-study demonstrates the feasibility of a combined experimental and numerical procedure to validate a computer model of the masseter muscle.
View Article and Find Full Text PDFThe paper shows that it is possible to combine the free-energy lattice Boltzmann approach to multiphase modeling of fluids involving both liquid and vapor with the partial bounce back lattice Boltzmann approach to modeling effective media. Effective media models are designed to mimic the properties of porous materials with porosity much finer than the scale of the simulation lattice. In the partial bounce-back approach, an effective media parameter or bounce-back fraction controls fluid transport.
View Article and Find Full Text PDFIn this study, an in vitro device that mimics the oral phase of swallowing is calibrated using in vivo measurements. The oral flow behavior of different Newtonian and non-Newtonian solutions is then investigated in vitro, revealing that shear-thinning thickeners used in the treatment of dysphagia behave very similar to low-viscosity Newtonian liquids during active swallowing, but provide better control of the bolus before the swallow is initiated. A theoretical model is used to interpret the experimental results and enables the identification of two dynamical regimes for the flow of the bolus: first, an inertial regime of constant acceleration dependent on the applied force and system inertia, possibly followed by a viscous regime in which the viscosity governs the constant velocity of the bolus.
View Article and Find Full Text PDFA model experiment to understand the oral phase of swallowing is presented and used to explain some of the mechanisms controlling the swallowing of Newtonian liquids. The extent to which the flow is slowed down by increasing the viscosity of the liquid or the volume is quantitatively studied. The effect of the force used to swallow and of the gap between the palate and the roller used to represent the contracted tongue are also quantified.
View Article and Find Full Text PDFThe reconstitution of a beverage from a dehydrated powder involves several physical mechanisms that determine the practical difficulty to obtain a homogeneous drink in a convenient way and within an acceptable time for the preparation of a beverage. When pouring powder onto static water, the first hurdle to overcome is the air-water interface. We propose a model to predict the percentage of powder crossing the interface in 45 s, namely the duration relevant for this application.
View Article and Find Full Text PDFWe study the wetting of polymer layers by polar solvents. As previously observed, when a droplet of solvent spreads, both its contact angle and velocity decrease with time as a result of solvent transfers from the droplet to the substrate. We show that, when the polymer is initially glassy, the angle decreases steeply for a given value of the velocity, Ug.
View Article and Find Full Text PDFThe wetting dynamics of a solvent on a soluble substrate interestingly results from the rates of the solvent transfers into the substrate. When a supported film of a hydrosoluble polymer with thickness e is wet by a spreading droplet of water with instantaneous velocity U, the contact angle is measured to be inversely proportionate to the product of thickness and velocity, eU, over two decades. As for many hydrosoluble polymers, the polymer we used (a polysaccharide) has a strongly nonlinear sorption isotherm φ(a(w)), where φ is the volume fraction of water in the polymer and aw is the activity of water.
View Article and Find Full Text PDFWe investigate the wicking in granular media by considering layers of grains at the surface of a liquid and discuss the critical contact angle below which spontaneous impregnation takes place. This angle is found to be on the order of 55° for monodisperse layers, significantly smaller than 90°, the threshold value for penetrating assemblies of tubes. Owing to geometry, impregnating grains is more demanding than impregnating tubes.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
June 2008
We describe an approach for exploring microscopic properties of granular media that couples x-ray microtomography and distinct-element-method (DEM) simulations through image analysis. We illustrate it via the study of the intriguing phenomenon of instant arching in an hourglass (in our case a cylinder filled with a polydisperse mixture of glass beads that has a small circular shutter in the bottom). X-ray tomography provides three-dimensional snapshots of the microscopic conditions of the system both prior to opening the shutter, and thereafter, once jamming is completed.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
August 2007
Granular media composed of elongated particles rearrange and order vertically upon vertical vibration. We perform pseudo-two-dimensional discrete element model simulations and show that this phenomenon also takes place with no help from vertical walls. We quantitatively analyze the sizes of voids forming during vibrations and consider a void-filling mechanism to explain the observed vertical ordering.
View Article and Find Full Text PDF