HgTe nanocrystals (NCs) enable broadly tunable infrared absorption, now commonly used to design light sensors. This material tends to grow under multipodic shapes and does not present well-defined size distributions. Such point generates traps and reduces the particle packing, leading to a reduced mobility.
View Article and Find Full Text PDFWe report the synthesis of colloidal CsPbX-PbSBr (X = Cl, Br, I) nanocrystal heterostructures, providing an example of a sharp and atomically resolved epitaxial interface between a metal halide perovskite and a non-perovskite lattice. The CsPbBr-PbSBr nanocrystals are prepared by a two-step direct synthesis using preformed subnanometer CsPbBr clusters. Density functional theory calculations indicate the creation of a quasi-type II alignment at the heterointerface as well as the formation of localized trap states, promoting ultrafast separation of photogenerated excitons and carrier trapping, as confirmed by spectroscopic experiments.
View Article and Find Full Text PDFVarious strategies have been proposed to engineer the band gap of metal halide perovskite nanocrystals (NCs) while preserving their structure and composition and thus ensuring spectral stability of the emission color. An aspect that has only been marginally investigated is how the type of surface passivation influences the structural/color stability of AMX perovskite NCs composed of two different M cations. Here, we report the synthesis of blue-emitting Cs-oleate capped CsCd Pb Br NCs, which exhibit a cubic perovskite phase containing Cd-rich domains of Ruddlesden-Popper phases (RP phases).
View Article and Find Full Text PDFWe synthesized strongly anisotropic CsPbBr nanocrystals with very narrow emission and absorption lines associated to confinement effects along one or two dimensions, called respectively nanoplatelets (NPLs) and nanosticks (NSTs). Transmission Electron Microscopy (TEM) images, absorption and photoluminescence (PL) spectra taken at low temperature are very precise tools to determine which kind of confinement has to be considered and to deduce the shape, the size and the thickness of nanocrystals under focus. We show that the energy of the band-edge absorption and PL peaks versus the inverse of the square of the NPL thickness has a linear behaviour from 11 monolayers (MLs) i.
View Article and Find Full Text PDFWe report the colloidal synthesis of a series of surfactant-stabilized lead chalcohalide nanocrystals. Our work is mainly focused on PbSBr, a chalcohalide phase unknown to date that does not belong to the ambient-pressure PbS-PbBr phase diagram. The PbSBr nanocrystals herein feature a remarkably narrow size distribution (with a size dispersion as low as 5%), a good size tunability (from 7 to ∼30 nm), an indirect bandgap, photoconductivity (responsivity = 4 ± 1 mA/W), and stability for months in air.
View Article and Find Full Text PDFNow that colloidal nanocrystals (NCs) have been integrated as green and red sources for liquid crystal displays, the next challenge for quantum dots is their use in electrically driven light-emitting diodes (LEDs). Among various colloidal NCs, nanoplatelets (NPLs) have appeared as promising candidates for light-emitting devices because their two-dimensional shape allows a narrow luminescence spectrum, directional emission, and high light extraction. To reach high quantum efficiency, it is critical to grow core/shell structures.
View Article and Find Full Text PDFThe gating of nanocrystal films is currently driven by two approaches: either the use of a dielectric such as SiO or the use of electrolyte. SiO allows fast bias sweeping over a broad range of temperatures but requires a large operating bias. Electrolytes, thanks to large capacitances, lead to the significant reduction of operating bias but are limited to slow and quasi-room-temperature operation.
View Article and Find Full Text PDFWe demonstrate the growth of 2D nanoplatelets (NPLs) made of a HgTe/CdS heterostructure, with an optical absorption reaching the shortwave infrared range. The material is an interesting platform to investigate the effect of dimensionality (0D vs. 2D) and confinement on the electronic spectrum and carrier dynamics in colloidal materials.
View Article and Find Full Text PDFInfrared (IR) sensors based on epitaxially grown semiconductors face two main challenges which are their prohibitive cost and the difficulty to rise the operating temperature. The quest for alternative technologies which will tackle these two difficulties requires the development of new IR active materials. Over the past decade, significant progresses have been achieved.
View Article and Find Full Text PDFAll inorganic CsPbX3 (X = Cl, Br, I) nanocrystals (NCs) belong to the novel class of confined metal-halide perovskites which are currently arousing enthusiasm and stimulating huge activity across several fields of optoelectronics due to outstanding properties. A deep knowledge of the band-edge excitonic properties of these materials is thus crucial to further optimize their performances. Here, high-resolution photoluminescence (PL) spectroscopy of single bromide-based NCs reveals the exciton fine structure in the form of sharp peaks that are linearly polarized and grouped in doublets or triplets, which directly mirror the adopted crystalline structure, tetragonal (D4h symmetry) or orthorhombic (D2h symmetry).
View Article and Find Full Text PDFStudies of the mechanical contact between nanometer-scale particles provide fundamental insights into the mechanical properties of materials and the validity of contact laws at the nanoscale which are still under debate for contact surfaces approaching atomic dimensions. Using in situ Brillouin light scattering under high pressure, we show that effective medium theories successfully predict the macroscopic sound velocities in nanopowders if one takes into account the cementation of the contacts Our measurements suggest the relevance of the continuum approach and effective medium theories to describe the contact between nanoparticles of diameters as small as 4 nm, i.e.
View Article and Find Full Text PDFMultimetallic nano-alloys display a structure and consequently physicochemical properties evolving in a reactive environment. Following and understanding this evolution is therefore crucial for future applications in gas sensing and heterogeneous catalysis. In view hereof, the structural evolution of oxidized AgIn bimetallic nanoparticles under varying H partial pressures (P) and substrate temperatures (T) has been investigated in real-time through environmental transmission microscopy (E-TEM) while maintaining the atomic resolution.
View Article and Find Full Text PDFHomodimers of noble metal nanocubes form model plasmonic systems where the localized plasmon resonances sustained by each particle not only hybridize but also coexist with excitations of a different nature: surface plasmon polaritons confined within the Fabry-Perot cavity delimited by facing cube surfaces (i.e., gap plasmons).
View Article and Find Full Text PDFThe optical absorption of bimetallic nanoparticles M-Ag involving silver as an active plasmonic compound has been the subject of very extensive experimental studies, both for a large range of sizes and a large variety of associated metals. Considering the most commonly encountered core-shell segregated configuration M@Ag involving a transition metal M, the spectral response is found to be weakly discriminating with regard to the chemical order and composition and is characterized by a large unstructured plasmon resonance in the 2 eV to 4 eV range. The plasmon band is essentially shaped by the scars made in the absorption continuum of metal M by Fano-like induced resonances and is surprisingly little sensitive to the exact nature of this metal, giving birth to a "quasi universal" optical signature for M@Ag systems.
View Article and Find Full Text PDF