Publications by authors named "Ramadan Musa"

Objective: The potential of the atherogenic human carotid plaque to stimulate the inflammatory process was examined in human monocytes and macrophages, in vitro.

Methods And Results: Exposure of monocytes to human carotid plaque lipid extract (LE) elevated the transcription level of the proinflammatory cytokines, interleukin (IL)-1β and tumor necrosis factor (TNF)-α, by 2.9 and 100.

View Article and Find Full Text PDF

Human atherosclerotic lesions contain oxidized lipids that facilitate further oxidation of macrophages, LDLs, and oxidative stress (OS)-sensitive markers and inhibit the antiatherogenic enzyme paraoxonase 1 (PON1). Our aim was to isolate and identify the oxidizing agent in a human atherosclerotic lesion lipid extract (LLE) and to explore the mechanisms of oxidation and of PON1's effect on the oxidizing agent. Of the five main fractions separated from the LLE, only fraction 2 (F2) promoted macrophage reactive oxygen species (ROS) production via a mechanism requiring mitochondrial involvement, whereas the NADPH oxidase system was not involved.

View Article and Find Full Text PDF

Paraoxonase 1 (PON1) is an HDL-associated lactonase with antiatherogenic properties. These include dampening the oxidation properties of human carotid lesion lipid extract (LLE), which in turn inactivates the enzyme. The aims of this study were to identify the PON1 inhibitor in LLE and explore the mechanism of inhibition.

View Article and Find Full Text PDF

A variety of protein-coating procedures are used to modify proteins' properties. The principle coating agent used is PEGylation, in which proteins are coated by conjunction to polyethylene glycol (PEG). In the present study, we describe a novel approach that makes use of small molecules with multifunctional groups as the protein-coating agent.

View Article and Find Full Text PDF

Isothiocyanates (ITCs), which are organosulfur compounds present in cruciferous vegetables, have anticarcinogenic, antiinflammatory, and antiproliferative activities. These biological activities, and the knowledge that rocket seed (Eruca sativa) extract is used in skin disorders in traditional Middle Eastern medicine, led to the isolation and assessment of 4-methylthiobutylisothiocyanate (MTBI), the major ITC in rocket seeds, for its potential in the prevention of inflammatory skin diseases, such as psoriasis. MTBI was found to depress the growth of activated keratinocytes and to arrest the activated THP-1 monocytes in the G2 stage.

View Article and Find Full Text PDF

Human atherosclerotic plaque contains a variety of oxidized lipids, which can facilitate further oxidation. Paraoxonase 1 (PON1) is a high-density lipoprotein (HDL)-associated esterase (lipolactonase), exhibiting antiatherogenic properties. The aims of the present study were to examine the oxidizing potency of the human carotid plaque lipid extract (LE), and the antiatherogenic role of PON1 on LE oxidation competence.

View Article and Find Full Text PDF

In the present study, we extend our novel concept of designing and using exogenous markers for the characterization of oxidative stress (OS) and OS-associated diseases. The aim was to use such a synthetic compound as a tool for studying OS in blood from diabetic and hypercholesterolaemic (Hc) patients. The marker used N-linoleoyl tyrosine (LT) was constructed from tyrosine and linoleic acid (LA); both components are known to be easily oxidized upon exposure to different types of reactive oxygen/nitrogen species (ROS/RNS), and to generate specific oxidized products, depending on the type of oxidants present in vivo.

View Article and Find Full Text PDF

The objective of the present study was to investigate to what extent the addition of hydrophobic residues to a 2,4-resorcinol derivative would contribute to their tyrosinase inhibitory potency. Hence, 3-(2,4-dihydroxyphenyl)propionic acid, isolated from Ficus carica, was transformed into esters, and the relationship between the structure of these esters to their mushroom tyrosinase inhibition activity was explored. The enzyme crystallographic structure, published recently (Matoba, Y.

View Article and Find Full Text PDF

Oxidative stress (OS) and its consequences which promote alterations in biomolecules, to tissue damage and to the development of pathological conditions, continue to attract many investigators. The identification of reliable biomarker is essential for the characterization of OS and possibly for early discovery of OS-associated diseases. The aim of the present study was to offer a new concept in the development of novel probes for OS, based on the design, synthesis, and utilization of exogenous markers, as alternative to the search for endogenous markers.

View Article and Find Full Text PDF

Compounds, which inhibit tyrosinase, could be effective as depigmenting agents. We have introduced a group of mono-, di-, tri- and tetra-substituted hydroxychalcones as effective tyrosinase inhibitors, showing that the most important factor determining tyrosinase inhibition efficiency is the position of the hydroxyl group(s) rather their number. The aim of the present study was to investigate the contribution of the different functional groups of the tetrahydroxychalcones to their inhibitory potency, with a view to optimizing the design of whitening agents.

View Article and Find Full Text PDF

The inhibition of tyrosinase is one of the major strategies to treat hyperpigmentation. Various limitations are associated with many of these inhibitors, such as high cytotoxicity, poor skin penetration and low stability in formulations. In continuation of our previous study [J.

View Article and Find Full Text PDF

Tyrosinase is known to be a key enzyme in melanin biosynthesis, involved in determining the color of mammalian skin and hair. Various dermatological disorders, such as melasama, age spots, and sites of actinic damage, arise from the accumulation of an excessive level of epidermal pigmentation. The inadequacy of current therapies to treat these conditions as well as high cytotoxicity and mutagenicity, poor skin penetration, and low stability of formulations led us to seek new whitening agents to meet the medical requirements for depigmenting agents.

View Article and Find Full Text PDF

Twenty flavonoid compounds of five different subclasses were selected, and the relationship of their structure to the inhibition of low-density lipoprotein (LDL) oxidation in vitro was investigated. The most effective inhibitors, by either copper ion or 2,2'-azobis (2-amidino-propane) dihydrochloride (AAPH) induction, were flavonols and/or flavonoids with two adjacent hydroxyl groups at ring B. In the presence of the later catechol group, the contribution of the double bond and the carbonyl group at ring C was negligible.

View Article and Find Full Text PDF