Publications by authors named "Ramadan Abu-Rjal"

Herein, we demonstrate digital microfluidics-like manipulations of preconcentrated biomolecule plugs within a continuous flow that is different from the commonly known digital microfluidics involving discrete ( droplets) media. This is realized using one- and two-dimensional arrays of individually addressable ion-permselective membranes with interconnecting microfluidic channels. The location of powered electrodes, dictates which of the membranes are active and generates either enrichment/depletion diffusion layers, which, in turn, control the location of the preconcentrated plug.

View Article and Find Full Text PDF

Nanofluidic diodes are capable of rectifying the electrical current by several orders of magnitude. In the current state of affairs, determining the rectification factor is not possible as it depends on many system parameters. In this work, we systematically scan the effects of geometry and excess counterion concentrations (i.

View Article and Find Full Text PDF

Ionic concentration-polarization (CP)-based biomolecule preconcentration is an established method for enhancing the detection sensitivity of target biomolecules. However, the formed preconcentrated biomolecule plug rapidly sweeps over the surface-immobilized antibodies, resulting in a short-term overlap between the capture agent and the analyte, and subsequently suboptimal binding. To overcome this, we designed a setup allowing for the periodic formation of a preconcentrated biomolecule plug by activating the CP for predetermined on/off intervals.

View Article and Find Full Text PDF

Presented is a novel flow sensor based on electrochemical sensing of the ionic concentration-polarization (CP) layer developed within a microchannel-ion permselective membrane device. To demonstrate the working principle of the electrochemical flow sensor, the effect of advection on the transient and steady-state ionic concentration-polarization (CP) phenomenon in microchannel-Nafion membrane systems is studied. In particular, we focused on the local impedance, measured using an array of electrode pairs embedded at the bottom of the microchannel, as well as the total current across the permselective medium, as two approaches for estimating the flow.

View Article and Find Full Text PDF

We investigate the development of electro-osmotic (Teorell) oscillations at a weakly charged microporous membrane without a preimposed transmembrane electrolyte concentration drop. This drop, necessary for the occurrence of oscillations, develops spontaneously as a result of concentration polarization in the solution layers adjacent to the membrane. A three-layer model comprising a membrane flanked by two diffusion layers is proposed and analyzed for galvano- and potentiostatic regimes of operation.

View Article and Find Full Text PDF

In this paper, the variation of permselectivity in the course of concentration polarization is systematically analyzed for a three-layer membrane system consisting of a nonperfectly permselective ion exchange membrane, homogeneous or heterogeneous, flanked by two diffusion layers of a binary univalent electrolyte. For a heterogeneous membrane, an ionic transport model is proposed, which is amenable to analytical treatment. In this model, assuming a constant fixed charge in the membrane and disregarding water splitting, the entire transport problem is reduced to solution of a single algebraic equation for the counterion transport number.

View Article and Find Full Text PDF