Publications by authors named "Rama Krishna Kadiyam"

The thermal electrocyclic ring opening of fused -cyclobutene to ,-diene is prohibited according to the Woodward-Hoffmann (WH) rules; nonetheless, experiments provide firm evidence for their formation. However, the mechanism, electronic structure, and behavior during the reaction are ambiguous. Herein, we attempt to gain insights into the mechanism of thermal ring opening in four -heterocycles containing a conjugated diene as the core skeleton.

View Article and Find Full Text PDF

Harnessing solar energy by employing chemical photoswitches in molecular solar thermal (MOST) energy storage systems is a topic of appealing research interest. However, incorporating all the features desired for an ideal MOST system in a single photoswitching couple is challenging. Inspired by experimental synthesis, herein we report our attempt to enhance both the thermochemical and photophysical properties in a single-bridged bicyclic diene (BBD)-based photoswitch by elongating the unsaturated bridge with different heteroatomic units.

View Article and Find Full Text PDF

The propensity of fulvenes to undergo dimerization has long been known, although the in-depth mechanism and electronic behavior during dimerization are still elusive. Herein, we made an attempt to gain insights into the reactivity of pentafulvene for Diels-Alder (DA) and [6 + 4]-cycloadditions via conventional and ambimodal routes. The result emphasizes that pentafulvene dimerization preferentially proceeds through a unique bifurcation mechanism where two DA pathways merge together to produce two degenerate [4 + 2]-cycloadducts from a single TS.

View Article and Find Full Text PDF

Exotic metallic nanostructures are being intensely pursued for a myriad of applications, with ultrathin membranes currently at the heart of several investigations. The objective of the present study was to systematically assess the atom-by-atom encapsulation of Be in the molecular nanoring of [6]cycloparaphenylene ([6]CPP). Further, the study aimed to scrutinize the structure, stability, and properties of the encapsulated Be@[6]CPP systems.

View Article and Find Full Text PDF