A seven-membered cyclic chiral analog of potent lead BTK inhibitor 1 was envisioned by structure-based design to lock the molecule into its bioactive conformation. For the elaboration of the seven-membered ring, compound 1 pyridone 6-position was substituted with the purpose to prevent formation of reactive metabolites. Eventually, the cyclic chiral compound 3 maintained the high potency of 1, and most importantly showed no activity at either GSH or TDI assays suggesting no formation of reactive metabolites.
View Article and Find Full Text PDFA rational fluorine scan based on co-crystal structures was explored to increase the potency of a series of selective BTK inhibitors. While fluorine substitution on a saturated bicyclic ring system yields no apparent benefit, the same operation on an unsaturated bicyclic ring can increase HWB activity by up to 40-fold. Comparison of co-crystal structures of parent molecules and fluorinated counterparts revealed the importance of placing fluorine at the optimal position to achieve favorable interactions with protein side chains.
View Article and Find Full Text PDFStructure-based drug design was used to guide the optimization of a series of selective BTK inhibitors as potential treatments for Rheumatoid arthritis. Highlights include the introduction of a benzyl alcohol group and a fluorine substitution, each of which resulted in over 10-fold increase in activity. Concurrent optimization of drug-like properties led to compound 1 (RN486) ( J.
View Article and Find Full Text PDFBackground And Purpose: The human CCR5 receptor is a co-receptor for HIV-1 infection and a target for anti-viral therapy. A greater understanding of the binding kinetics of small molecule allosteric ligand interactions with CCR5 will lead to a better understanding of the binding process and may help discover new molecules that avoid resistance.
Experimental Approach: Using [(3) H] maraviroc as a radioligand, a number of different binding protocols were employed in conjunction with simulations to determine rate constants, kinetic mechanism and mutant kinetic fingerprints for wild-type and mutant human CCR5 with maraviroc, aplaviroc and vicriviroc.
Lysophosphatidic acid is a class of bioactive phospholipid that mediates most of its biological effects through LPA receptors, of which six isoforms have been identified. The recent results from LPA1 knockout mice suggested that blocking LPA1 signaling could provide a potential novel approach for the treatment of idiopathic pulmonary fibrosis. Here, we report the design and synthesis of pyrazole- and triazole-derived carbamates as LPA1-selective and LPA1/3 dual antagonists.
View Article and Find Full Text PDFInhibition of PI3Kδ is considered to be an attractive mechanism for the treatment of inflammatory diseases and leukocyte malignancies. Using a structure-based design approach, we have identified a series of potent and selective benzimidazole-based inhibitors of PI3Kδ. These inhibitors do not occupy the selectivity pocket between Trp760 and Met752 that is induced by other families of PI3Kδ inhibitors.
View Article and Find Full Text PDFA central problem in structure-based drug design is understanding protein-ligand interactions quantitatively and qualitatively. Several recent studies have highlighted from a qualitative perspective the nature of these interactions and their utility in drug discovery. However, a common limitation is a lack of adequate tools to mine these interactions comprehensively, since exhaustive searches of the protein data bank are time-consuming and difficult to perform.
View Article and Find Full Text PDFRelationships between drug targets and associated diseases have traditionally been investigated by means of sequence similarity, comparative protein modeling, and pathway analysis. Recently, a complementary paradigm has emerged to link targets and drugs via biological responses within activity data and visualize findings in networks. It has been indicated that one of the obstacles towards the identification of novel interactions is the sparsity of available data.
View Article and Find Full Text PDFReplacement of a secondary amide with a piperidine or azetidine moiety in a series of CCR5 antagonists led to the discovery of compounds with increased intrinsic permeability. This effort led to the identification of a potent CCR5 antagonist which exhibited an improved in vivo pharmacokinetic profile.
View Article and Find Full Text PDFThe cellular function of kinases combined with the difficulty of designing selective small molecule kinase inhibitors (SMKIs) poses a challenge for drug development. The late-stage attrition of SMKIs could be lessened by integrating safety information of kinases into the lead optimization stage of drug development. Herein, a mathematical model to predict bone marrow toxicity (BMT) is presented which enables the rational design of SMKIs away from this safety liability.
View Article and Find Full Text PDFSpleen tyrosine kinase is considered an attractive drug target for the treatment of allergic and antibody mediated autoimmune diseases. We have determined the co-crystal structures of spleen tyrosine kinase complexed with three known inhibitors: YM193306, a 7-azaindole derivative and R406. The cis-cyclohexyldiamino moiety of YM193306 is forming four hydrophobically shielded polar interactions with the spleen tyrosine kinase protein and is therefore crucial for the high potency of this inhibitor.
View Article and Find Full Text PDFSeveral serotonin reuptake inhibitors are in clinical use for treatment of depression and anxiety disorders. However, to date, reported pharmacological differentiation of these ligands has focused mainly on their equilibrium binding affinities for the serotonin transporter. This study takes a new look at antidepressant binding modes using radioligand binding assays with [(3)H]S-citalopram to determine equilibrium and kinetic rate constants across multiple temperatures.
View Article and Find Full Text PDFThe inter- and intramolecular interactions that determine the experimentally observed binding mode of the ligand (2Z)-2-(benzoylamino)-3-[4-(2-bromophenoxy)phenyl]-2-propenoate in complex with hepatitis C virus NS5B polymerase have been studied using QM/MM calculations. DFT-based QM/MM optimizations were performed on a number of ligand conformers in the protein-ligand complex. Using these initial poses, our aim is 2-fold.
View Article and Find Full Text PDFIn addition to being an important receptor in leukocyte activation and mobilization, CCR5 is the essential coreceptor for human immunodeficiency virus (HIV). A large number of small-molecule CCR5 antagonists have been reported that show potent activities in blocking chemokine function and HIV entry. To facilitate the design and development of next generation CCR5 antagonists, docking models for major classes of CCR5 antagonists were created by using site-directed mutagenesis and CCR5 homology modeling.
View Article and Find Full Text PDFSix mouse anti-human CCR5 monoclonal antibodies (mAbs) that showed potent antiviral activities were identified from over 26,000 mouse hybridomas. The epitopes for these mAbs were determined by using various CCR5 mutants, including CCR5/CCR2B chimeras. One mAb, ROAb13, was found to bind to a linear epitope in the N terminus of CCR5.
View Article and Find Full Text PDF