Age-related cataract formation is marked by the progressive aggregation of lens proteins. The formation of protein aggregates in the aging lens has been shown to correlate with the progressive accumulation of a range of post-translational crystallin modifications, including oxidation, deamidation, racemization, methylation, acetylation, N- and C-terminal truncations and low molecular weight (LMW) crystallin fragments. We found that an αA-crystallin-derived peptide, αA66-80 (1.
View Article and Find Full Text PDFCataract is characterized by progressive protein aggregation and loss of vision. α-Crystallins are the major proteins in the lens responsible for maintaining transparency. They exist in the lens as highly polydisperse oligomers with variable numbers of subunits, and mutations in α-crystallin are associated with some forms of cataract in humans.
View Article and Find Full Text PDFFormation of protein aggregates in the aging eye lens has been shown to correlate with progressive accumulation of specific low-molecular weight (LMW) peptides derived from crystallins. Prominent among the LMW fragments is αA66-80, a peptide derived from αA-crystallin and present at higher concentrations in the water-insoluble nuclear fractions of the aging lens. The αA66-80 peptide has amyloid-like properties and preferentially insolubilizes α-crystallin from soluble lens fractions.
View Article and Find Full Text PDFTrefoil factor (TFF)1 is synthesized and secreted by the normal stomach mucosa and by the gastrointestinal cells of injured tissues. The link between mouse TFF1 inactivation and the fully penetrant antropyloric tumor phenotype prompted the classification of TFF1 as a gastric tumor suppressor gene. Accordingly, altered expression, deletion, and/or mutations of the TFF1 gene are frequently observed in human gastric carcinomas.
View Article and Find Full Text PDF