Publications by authors named "Ram Tiwari"

In oncology drug development, overall response rate (ORR) is commonly used as an early endpoint to assess the clinical benefits of new interventions; however, ORR benefit may not always translate into a long-term clinical benefit such as overall survival (OS). Most of the work on developing endpoints based on tumor growth dynamics relies on empirical validation, leading to a lack of generalizability of the endpoints across indications and therapeutic modalities. Additionally, many of these metrics are model-based and do not use data from all the patients.

View Article and Find Full Text PDF

Post-marketing surveillance refers to the process of monitoring the safety of drugs once they reach the market, after the successful completion of clinical trials. In this work, we investigate a computational approach using data mining tools to detect safety signals from post-market safety databases, or in other words, to identify adverse events (AEs) with disproportionately high reporting rates compared to other AEs, associated with a particular drug or a drug class. Essentially, we view this as a problem of cluster analysis-based anomaly detection on post-market safety data, where the goal is to 'unsupervisedly' detect the anomalous or the signal AEs.

View Article and Find Full Text PDF

This paper focuses on the use of novel technologies and innovative trial designs to accelerate evidence generation and increase pharmaceutical Research and Development (R&D) productivity, at Bristol Myers Squibb. We summarize learnings with case examples, on how we prepared and continuously evolved to address the increasing cost, complexities, and external pressures in drug development, to bring innovative medicines to patients much faster. These learnings were based on review of internal efforts toward accelerating R&D focusing on four key areas: adopting innovative trial designs, optimizing trial designs, leveraging external control data, and implementing novel methods using artificial intelligence and machine learning.

View Article and Find Full Text PDF

In a randomized controlled trial with time-to-event endpoint, some commonly used statistical tests to test for various aspects of survival differences, such as survival probability at a fixed time point, survival function up to a specific time point, and restricted mean survival time, may not be directly applicable when external data are leveraged to augment an arm (or both arms) of an RCT. In this paper, we propose a propensity score-integrated approach to extend such tests when external data are leveraged. Simulation studies are conducted to evaluate the operating characteristics of three propensity score-integrated statistical tests, and an illustrative example is given to demonstrate how these proposed procedures can be implemented.

View Article and Find Full Text PDF

On April 25 of 2015, earthquake of 7.6 M struck the central Himalayan region having epicenter at Barpak village in the Gorkha district of Nepal. The event was followed by 7.

View Article and Find Full Text PDF

Background: Multiple criteria decision analysis (MCDA) and stochastic multi-criteria acceptability analysis (SMAA) in their current implementation cannot incorporate prior or external information on benefits and risks. We demonstrate how to incorporate prior data using a Bayesian mixture model approach while conducting quantitative benefit-risk assessments (qBRA) for medical products.

Methods: We implemented MCDA and SMAA in a Bayesian framework.

View Article and Find Full Text PDF

The propensity score-integrated composite likelihood (PSCL) method is one method that can be utilized to design and analyze an application when real-world data (RWD) are leveraged to augment a prospectively designed clinical study. In the PSCL, strata are formed based on propensity scores (PS) such that similar subjects in terms of the baseline covariates from both the current study and RWD sources are placed in the same stratum, and then composite likelihood method is applied to down-weight the information from the RWD. While PSCL was originally proposed for a fixed design, it can be extended to be applied under an adaptive design framework with the purpose to either potentially claim an early success or to re-estimate the sample size.

View Article and Find Full Text PDF

We consider outcome adaptive phase II or phase II/III trials to identify the best treatment for further development. Different from many other multi-arm multi-stage designs, we borrow approaches for the best arm identification in multi-armed bandit (MAB) approaches developed for machine learning and adapt them for clinical trial purposes. The best arm identification in MAB focuses on the error rate of identification at the end of the trial, but we are also interested in the cumulative benefit of trial patients, for example, the frequency of patients treated with the best treatment.

View Article and Find Full Text PDF

An earthquake of magnitude 5.6 mb (6.6 ML) hit western Nepal (Doti region) in the wee hours of wednesday morning local time (2:12 AM, 2022.

View Article and Find Full Text PDF

In the area of diagnostics, it is common practice to leverage external data to augment a traditional study of diagnostic accuracy consisting of prospectively enrolled subjects to potentially reduce the time and/or cost needed for the performance evaluation of an investigational diagnostic device. However, the statistical methods currently being used for such leveraging may not clearly separate study design and outcome data analysis, and they may not adequately address possible bias due to differences in clinically relevant characteristics between the subjects constituting the traditional study and those constituting the external data. This paper is intended to draw attention in the field of diagnostics to the recently developed propensity score-integrated composite likelihood approach, which originally focused on therapeutic medical products.

View Article and Find Full Text PDF

This proof-of-concept study retrospectively assessed the feasibility of applying a hybrid control arm design to a completed phase III randomized controlled trial (RCT; CheckMate-057) in advanced non-small cell lung cancer using a real-world data (RWD) source. The emulated trial consists of an experimental arm (patients from the RCT experimental cohort) and a hybrid control arm (patients from the RCT and RWD control cohorts). For the RWD control cohort, this study used a nationwide electronic health record-derived de-identified database.

View Article and Find Full Text PDF

External data, referred to as data external to the traditional clinical study being planned, include but are not limited to real-world data (RWD) and data collected from clinical studies being conducted in the past or in other countries. The external data are sometimes leveraged to augment a single-arm, prospectively designed study when appropriate. In such an application, recently developed propensity score-integrated approaches including PSPP and PSCL can be used for study design and data analysis when the clinical outcomes are binary or continuous.

View Article and Find Full Text PDF

The document ICH E9 (R1) has brought much attention to the concept of estimand in the clinical trials community. ICH stands for International Conference for Harmonization. In this article, we draw attention to one facet of estimand that is not discussed in that document but is crucial in the context of observational studies, namely weighting for covariate balance.

View Article and Find Full Text PDF

Utilizing external data from the real world, including data from historical clinical trials, has received increasing interest in drug development. The use of external data to support drug evaluation in clinical trials has mainly been through using various matching methods for baseline characteristics to form external control arms in single-arm trials or to augment control arms of randomized controlled trials in hybrid approaches. However, matching the baseline characteristics between the trial and the external subjects can only guarantee comparability on the level of baseline characteristics.

View Article and Find Full Text PDF

Background: Meta-analysis of related trials can provide an overall measure of safety-signal accounting for variability across studies. In addition to an overall measure, researchers may often be interested in study-specific measures to assess safety of the product. Likelihood ratio tests (LRT) methods serve this purpose by identifying studies that appear to show a safety concern.

View Article and Find Full Text PDF

In this paper, we develop a methodology for leveraging real-world data into single-arm clinical trial studies. In recent years, the idea of augmenting randomized clinical trials data with real-world data has emerged as a particularly attractive technique for health organizations and drug developers to accelerate the drug development process. Major regulatory authorities such as the Food and Drug Administration and European Medicines Agency have recognized the potential of utilizing real-world data and are advancing toward making regulatory decisions based on real-world evidence.

View Article and Find Full Text PDF

Necessity for finding improved intervention in many legacy therapeutic areas are of high priority. This has the potential to decrease the expense of medical care and poor outcomes for many patients. Typically, clinical efficacy is the primary evaluating criteria to measure any beneficial effect of a treatment.

View Article and Find Full Text PDF

In this paper, a propensity score-integrated power prior approach is developed to augment the control arm of a two-arm randomized controlled trial (RCT) with subjects from multiple external data sources such as real-world data (RWD) and historical clinical studies containing subject-level outcomes and covariates. The propensity scores for the subjects in the external data sources versus the subjects in the RCT are first estimated, and then subjects are placed in different strata based on their estimated propensity scores. Within each propensity score stratum, a power prior is formulated with the information contributed by the external data sources, and Bayesian inference on the treatment effect is obtained.

View Article and Find Full Text PDF

In many orphan diseases and pediatric indications, the randomized controlled trials may be infeasible because of their size, duration, and cost. Leveraging information on the control through a prior can potentially reduce sample size. However, unless an objective prior is used to impose complete ignorance for the parameter being estimated, it results in biased estimates and inflated type-I error.

View Article and Find Full Text PDF
Article Synopsis
  • Performance goals in medical device studies are numeric targets for effectiveness or safety, set during the study planning phase based on past trial data.* -
  • There's a growing trend to use real-world evidence to inform these performance goals, which can improve their relevance to actual patient populations.* -
  • The article introduces a method using entropy balancing to align study patients with real-world ones, and illustrates its application for determining performance goals based on this evidence.*
View Article and Find Full Text PDF

The conditional power prior is a popular method to borrow information from a single prior data source. The amount of borrowing is controlled by the power parameter which is fixed before running the new study. However, fixing this parameter before running a new study is often difficult and may be unwise because if the outcomes in the current study are much different from the prior data outcomes, the power parameter cannot be changed to reflect a more appropriate degree of borrowing.

View Article and Find Full Text PDF

Leveraging external data is a topic that have recently received much attention. The propensity score-integrated approaches are a methodological innovation for this purpose. In this paper we adapt these approaches, originally introduced to augment single-arm studies with external data, for the augmentation of both arms of a randomized controlled trial (RCT) with external data.

View Article and Find Full Text PDF

Benefit-risk assessment plays an important role in the evaluation of medical devices. Unlike the therapeutic devices, the diagnostic tests usually affect patient life indirectly since subsequent therapeutic treatment interventions (such as proper treatment in time, further examination or test, no action, etc.) will depend on correct diagnosis and monitoring of the disease status.

View Article and Find Full Text PDF

The interest in utilizing real-world data (RWD) has been considerably increasing in medical product development and evaluation. With proper usage and analysis of high-quality real-world data, real-world evidence (RWE) can be generated to inform regulatory and healthcare decision-making. This paper proposes a study design and data analysis approach for a prospective, single-arm clinical study that is supplemented with patients from multiple real-world data sources containing patient-level covariate and outcome data.

View Article and Find Full Text PDF