The anterior-posterior (AP) axis in chordates is regulated by a conserved set of genes and signaling pathways, including genes and retinoic acid (RA), which play well-characterized roles in the organization of the chordate body plan. The intermediate mesoderm (IM), which gives rise to all vertebrate kidneys, is an example of a tissue that differentiates sequentially along this axis. Yet, the conservation of the spatiotemporal regulation of the IM across vertebrates remains poorly understood.
View Article and Find Full Text PDFBackground: Hox genes are key players in AP patterning of the vertebrate body plan and are necessary for organogenesis. Several studies provide evidence for the role Hox genes play during kidney development and especially regarding metanephros initiation and formation. However, the role Hox genes play during early stages of kidney development is largely unknown.
View Article and Find Full Text PDFCell fate determination is governed by complex signaling molecules at appropriate concentrations that regulate the cell decision-making process. In vertebrates, however, concentration and kinetic parameters are practically unknown, and therefore the mechanism by which these molecules interact is obscure. In myogenesis, for example, multipotent cells differentiate into skeletal muscle as a result of appropriate interplay between several signaling molecules, which is not sufficiently characterized.
View Article and Find Full Text PDFThe kidney develops in a specific position along the anterior-posterior axis. All vertebrate kidney tissues are derived from the intermediate mesoderm (IM), and early kidney genes such as Lim1 and Pax2 are expressed in amniotes posterior to the sixth somite axial level. IM cells anterior to this level do not express kidney genes owing to changes in their competence to respond to kidney-inductive signals present along the entire axis.
View Article and Find Full Text PDFStem cell populations exist in "niches" that hold them and regulate their fate decisions. Identification and characterization of these niches is essential for understanding stem cell maintenance and tissue regeneration. Here we report on the identification of a novel stem cell niche in Botryllus schlosseri, a colonial urochordate with high stem cell-mediated developmental activities.
View Article and Find Full Text PDFBackground: The restoration of adults from fragments of blood vessels in botryllid ascidians (termed whole body regeneration [WBR]) represents an inimitable event in the chordates, which is poorly understood on the mechanistic level.
Results: To elucidate mechanisms underlying this phenomenon, a subtracted EST library for early WBR stages was previously assembled, revealing 76 putative genes belonging to major signaling pathways, including Notch/Delta, JAK/STAT, protein kinases, nuclear receptors, Ras oncogene family members, G-Protein coupled receptor (GPCR) and transforming growth factor beta (TGF-beta) signaling. RT-PCR on selected transcripts documented specific up-regulation in only regenerating fragments, pointing to a broad activation of these signaling pathways at onset of WBR.
Many advanced snakes use fangs-specialized teeth associated with a venom gland-to introduce venom into prey or attacker. Various front- and rear-fanged groups are recognized, according to whether their fangs are positioned anterior (for example cobras and vipers) or posterior (for example grass snakes) in the upper jaw. A fundamental controversy in snake evolution is whether or not front and rear fangs share the same evolutionary and developmental origin.
View Article and Find Full Text PDFThe phenomenon of whole body regeneration (WBR) from minute soma fragments is a rare event in chordates, confined to the subfamily of botryllid ascidians and is poorly understood on the cellular and molecular levels. We assembled a list of 1326 ESTs from subtracted mRNA, at early stages of Botrylloides leachi WBR, and classified them into functional categories. Sixty-seven (15%) ESTs with roles in innate immunity signaling were classified into a broad functional group, a result supported by domain search and RT-PCR reactions.
View Article and Find Full Text PDFSonic hedgehog (Shh) has been reported to act as a mitogen and survival factor for muscle satellite cells. However, its role in their differentiation remains ambiguous. Here, we provide evidence that Shh promotes the proliferation and differentiation of primary cultures of chicken adult myoblasts (also termed satellite cells) and mouse myogenic C2 cells.
View Article and Find Full Text PDFRegeneration in adult chordates is confined to a few model cases and terminates in restoration of restricted tissues and organs. Here, we study the unique phenomenon of whole body regeneration (WBR) in the colonial urochordate Botrylloides leachi in which an entire adult zooid is restored from a miniscule blood vessel fragment. In contrast to all other documented cases, regeneration is induced systemically in blood vessels.
View Article and Find Full Text PDFThe signaling pathways leading to growth and patterning of various organs are tightly controlled during the development of any organism. These control mechanisms usually involve the utilization of feedback- and pathway-specific antagonists where the pathway induces the expression of its own antagonist. Sef is a feedback antagonist of fibroblast growth factor (FGF) signaling, which has been identified recently in zebrafish and mammals.
View Article and Find Full Text PDFThe vertebrate intermediate mesoderm (IM) is highly patterned along the anterior-posterior (A-P) axis. In the chick embryo, the kidney tissue, which is a derivative of the IM, is generated only from IM located posterior to the sixth somite axial level, which also marks the border between cranial and trunk segments. The cellular and molecular mechanisms that govern the formation of the anterior border of the kidney morphogenetic field are currently unknown.
View Article and Find Full Text PDFThe paired-box transcription factor Pax7 plays a critical role in the specification of satellite cells in mouse skeletal muscle. In the present study, the position and number of Pax7-expressing cells found in muscles of growing and adult chickens confirm the presence of this protein in avian satellite cells. The expression pattern of Pax7 protein, along with the muscle regulatory proteins MyoD and myogenin, was additionally elucidated in myogenic cultures and in whole muscle from posthatch chickens.
View Article and Find Full Text PDF