Publications by authors named "Ram R Kaswan"

Tetracyanopentacenequinone, a powerful electron acceptor, is fused directly to the porphyrin π-system to create a new class of donor-acceptor conjugates.  Owing to the direct fusion and electron-deficient property of tetracyanopentacenequinone, strong intramolecular charge transfer both in the ground and excited states was witnessed.  As a control, porphyrin fused with pentacenequinone was also investigated.

View Article and Find Full Text PDF

We have designed, synthesized, and characterized a donor-acceptor triad, , that consists of a π-interacting phenothiazine-linked porphyrin as a donor and sensitizer and fullerene as an acceptor to seek charge separation upon photoexcitation. The optical absorption spectrum revealed red-shifted Soret and Q-bands of porphyrin due to charge transfer-type interactions involving the two ethynyl bridges carrying electron-rich and electron-poor substituents. The redox properties suggested that the phenothiazine-porphyrin part of the molecule is easier to oxidize and the fullerene part is easier to reduce.

View Article and Find Full Text PDF

Symmetry breaking charge transfer is one of the important photo-events occurring in photosynthetic reaction centers that is responsible for initiating electron transfer leading to a long-lived charge-separated state and has been successfully employed in light-to-electricity converting optoelectronic devices. In the present study, we report a newly synthesized, far-red absorbing and emitting BODIPY-dimer to undergo symmetry-breaking charge transfer leading to charge-separated states of appreciable lifetimes in polar solvents. Compared to its monomer analog, both steady-state and time-resolved fluorescence originating from the S state of the dimer revealed quenching which increased with an increase in solvent polarity.

View Article and Find Full Text PDF

Platinum(II) π-extended porphyrins fused with pentacenequinone and dihydropentacene have been successfully synthesized. These porphyrins were investigated using various techniques including absorption, steady-state, and time-resolved phosphorescence spectroscopy and differential pulse voltammetry. UV-vis absorption spectra of pentacenequinone-fused porphyrins ( and ) showed unusually broad and nontypical absorption patterns.

View Article and Find Full Text PDF

Donor-acceptor systems in which a donor phenanthroimidazole (PhI) is directly connected to a BODIPY acceptor () and separated by an ethynyl bridge between PhI and BODIPY () have been designed, synthesized, and characterized by various spectroscopic and electrochemical techniques. Optical absorption and H NMR characteristics of both dyads with those of constituent individuals suggest that there exists a minimum π-π interaction between phenanthroimidazole and BODIPY. Quenched emission of both the dyads was observed when excited either at phenthaoimidazole absorption maxima or at BODIPY absorption maxima in all three investigated solvents.

View Article and Find Full Text PDF

A series of pyrazinepyrene-fused zinc phthalocyanines () have been newly synthesized by reacting quinoxaline and the corresponding diamino-functionalized phthalocyanines as a new class of π-extended phthalocyanine systems. Bathochromically shifted absorption as a function of the number of pyrazinepyrene entities due to extended π-conjugation and quenched fluorescence due to the presence of fused pyrazinepyrene were witnessed. The electronic structures of these phthalocyanines were probed by systematic computational and electrochemical studies, while the excited-state properties were examined by pump-probe spectroscopies operating at the femto- and nanosecond time scales.

View Article and Find Full Text PDF