Publications by authors named "Ram P Lamsal"

The most effective utilization of platinum (Pt) in fuel cells is achieved through the use of nanoparticles (NPs) that offer a large electrochemically active surface area. Because the stability of NPs decreases as they become smaller, their size and size distribution must be known in order to optimize the catalysts' durability, while offering high catalytic activity. Single particle inductively coupled plasma mass spectrometry (spICPMS) can quantify the mass of metallic NPs suspended in aqueous medium, which can then be converted into a size if the NPs' shape, density and composition are known.

View Article and Find Full Text PDF

This work compares the performance of transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), single particle inductively coupled plasma mass spectrometry (spICPMS) and flow injection (FI) coupled to spICPMS for the characterization of synthetic ferromagnetic Ni nanoparticles (NPs) prepared with and without polyvinylpyrrolidone (PVP) stabilizer. Whereas single NPs measurement by XRD yielded nominal diameters of 13.7 and 16.

View Article and Find Full Text PDF

Flow injection (FI) in combination with inductively coupled plasma mass spectrometry (ICPMS) is advantageous for the analysis of volume-limited samples and is invaluable for the analysis of corrosive samples that would prematurely degrade ICPMS components. However, the dispersion process with 50-μL injections in FI degrades ICPMS sensitivity. Monosegmented flow analysis (MSFA), where the sample plug is in the middle of 1 mL of air, eliminates dispersion while preserving the rinsing effect of the carrier.

View Article and Find Full Text PDF
Article Synopsis
  • Single-particle inductively coupled plasma mass spectrometry (spICPMS) is a tool for counting and measuring metal-containing nanoparticles, but it requires careful measurement of sample uptake and nebulization efficiency to determine particle mass.
  • A new method called flow injection-spICPMS (FI-spICPMS) simplifies this process by avoiding the need for sample uptake rate determination, only requiring measurement of transport efficiency for particle number calculation.
  • Tests with this new method successfully measured the size and quantity of 60 nm gold nanoparticles, achieving similar accuracy to traditional spICPMS while maintaining the same size detection limit of 20 nm.
View Article and Find Full Text PDF

A previously developed, efficient and simple on-line leaching method was used to assess the maximum bio-accessible fraction (assuming no synergistic effect from other food and beverage) of potentially toxic elements (Cr, As, Cd and Pb) in whole wheat brown and white bread samples. Artificial saliva, gastric juice and intestinal juice were successively pumped into a mini-column, packed with bread (maintained at 37 °C) connected on-line to the nebulizer of an inductively coupled plasma mass spectrometry (ICP-MS) instrument equipped with a collision-reaction interface (CRI) using hydrogen as reaction gas to minimize carbon- and chlorine-based polyatomic interferences. In contrast to the conventional batch method to which it was compared, this approach provides real-time monitoring of potentially toxic elements that are continuously released during leaching.

View Article and Find Full Text PDF