Introduction: Bicuspid aortic valve (BAV) is the most common congenital cardiac malformation, which had been treated off-label by transcatheter aortic valve replacement (TAVR) procedure for several years, until its recent approval by the Food and Drug Administration (FDA) and Conformité Européenne (CE) to treat BAVs. Post-TAVR complications tend to get exacerbated in BAV patients due to their inherent aortic root pathologies. Globally, due to the paucity of randomized clinical trials, clinicians still favor surgical AVR as the primary treatment option for BAV patients.
View Article and Find Full Text PDFBicuspid aortic valve (BAV), the most common congenital valvular abnormality, generates asymmetric flow patterns and increased stresses on the leaflets that expedite valvular calcification and structural degeneration. Recently adapted for use in BAV patients, TAVR demonstrates promising performance, but post-TAVR complications tend to get exacerbated due to BAV anatomical complexities. Utilizing patient-specific computational modeling, we address some of these complications.
View Article and Find Full Text PDFCongenital bicuspid aortic valve (BAV) consists of two fused cusps and represents a major risk factor for calcific valvular stenosis. Herein, a fully coupled fluid-structure interaction (FSI) BAV model was developed from patient-specific magnetic resonance imaging (MRI) and compared against in vivo 4-dimensional flow MRI (4D Flow). FSI simulation compared well with 4D Flow, confirming direction and magnitude of the flow jet impinging onto the aortic wall as well as location and extension of secondary flows and vortices developing at systole: the systolic flow jet originating from an elliptical 1.
View Article and Find Full Text PDFTranscatheter aortic valve replacement (TAVR) is a minimally invasive procedure that provides an effective alternative to open-heart surgical valve replacement for treating advanced calcific aortic valve disease patients. However, complications, such as valve durability, device migration, paravalvular leakage (PVL), and thrombogenicity may lead to increased overall post-TAVR morbidity and mortality. A series of numerical studies involving a self-expandable TAVR valve were performed to evaluate these complications.
View Article and Find Full Text PDFThis is to inform that the original article was published without the "Conflict of Interest" statement.
View Article and Find Full Text PDFTranscatheter aortic valve replacement (TAVR) has emerged as an effective alternative to conventional surgical valve replacement in high-risk patients afflicted by severe aortic stenosis. Despite newer-generation devices enhancements, post-procedural complications such as paravalvular leakage (PVL) and related thromboembolic events have been hindering TAVR expansion into lower-risk patients. Computational methods can be used to build and simulate patient-specific deployment of transcatheter aortic valves (TAVs) and help predict the occurrence and degree of PVL.
View Article and Find Full Text PDFIntroduction: Transcatheter aortic valve replacement (TAVR) has emerged as an effective minimally-invasive alternative to surgical valve replacement in medium- to high-risk, elderly patients with calcific aortic valve disease and severe aortic stenosis. The rapid growth of the TAVR devices market has led to a high variety of designs, each aiming to address persistent complications associated with TAVR valves that may hamper the anticipated expansion of TAVR utility.
Areas Covered: Here we outline the challenges and the technical demands that TAVR devices need to address for achieving the desired expansion, and review design aspects of selected, latest generation, TAVR valves of both clinically-used and investigational devices.
Transcatheter aortic valve replacement (TAVR) has emerged as a life-saving and effective alternative to surgical valve replacement in high-risk, elderly patients with severe calcific aortic stenosis. Despite its early promise, certain limitations and adverse events, such as suboptimal placement and valve migration, have been reported. In the present study, it was aimed to evaluate the effect of various TAVR deployment locations on the procedural outcome by assessing the risk for valve migration.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
October 2016
Calcific aortic valve disease (CAVD) is a cardiovascular condition that causes the progressive narrowing of the aortic valve (AV) opening, due to the growth of bone-like deposits all over the aortic root (AR). Transcatheter aortic valve replacement (TAVR), a minimally invasive procedure, has recently become the only lifesaving solution for patients that cannot tolerate the standard surgical valve replacement. However, adverse effects, such as AR injury or paravalvular leakage (PVL), may occur as a consequence of a sub-optimal procedure, due to the presence of calcifications in situ.
View Article and Find Full Text PDF