Publications by authors named "Ram I Sharma"

3D foam scaffolds were produced in a "bottom-up" approach from lyophilised cationic cellulose nanofibril (CCNF) dispersions and emulsions (CCNF degree of substitution 23.0 ± 0.9%), using a directional freezing/lyophilisation approach, producing internal architectures ranging from aligned smooth walled micro channels, mimicking vascularised tissue, to pumice-like wall textures, reminiscent of porous bone.

View Article and Find Full Text PDF

There is a growing appreciation that engineered biointerfaces can regulate cell behaviors, or functions. Most systems aim to mimic the cell-friendly extracellular matrix environment and incorporate protein ligands; however, the understanding of how a ligand-free system can achieve this is limited. Cell scaffold materials comprised of interfused chitosan-cellulose hydrogels promote cell attachment in ligand-free systems, and we demonstrate the role of cellulose molecular weight, MW, and chitosan content and MW in controlling material properties and thus regulating cell attachment.

View Article and Find Full Text PDF

Tissue engineering is a rapidly advancing field in regenerative medicine, with much research directed towards the production of new biomaterial scaffolds with tailored properties to generate functional tissue for specific applications. Recently, principles of sustainability, eco-efficiency and green chemistry have begun to guide the development of a new generation of materials, such as cellulose, as an alternative to conventional polymers based on conversion of fossil carbon (e.g.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers modified cellulose to promote better attachment of MG-63 cells by adding positively charged trimethylammonium groups, achieving over 90% cell attachment at low modification levels.
  • Cell attachment leveled off at a specific degree of substitution, indicating a link between surface charge and cell adherence, while stiffness was varied using glyoxal crosslinking.
  • The development of these tailored biomaterials represents a significant advancement towards creating scaffold materials that support cell growth and shape without needing additional proteins or ligands.
View Article and Find Full Text PDF
Article Synopsis
  • This study explores how cellulose can support cell growth in tissue engineering without needing additional matrix ligands on its surface.
  • Bacterial cellulose sheets were modified to have either a positive or negative charge, with positive charge enhancing cell attachment by 70%, while negative charge showed low attachment levels.
  • The research indicates that only a small amount of positive modification is necessary to promote cell adhesion, making positively charged bacterial cellulose a promising material for tissue engineering applications.
View Article and Find Full Text PDF

The extracellular matrix is a structural support network made up of diverse proteins, sugars and other components. It influences a wide number of cellular processes including migration, wound healing and differentiation, all of which is of particular interest to researchers in the field of tissue engineering. Understanding the composition and structure of the extracellular matrix will aid in exploring the ways the extracellular matrix can be utilised in tissue engineering applications especially as a scaffold.

View Article and Find Full Text PDF

We propose a novel, single step method for the production of polyacrylamide hydrogels with a gradient in mechanical properties. In contrast to already existing techniques such as UV photo-polymerization with photomasks (limited penetration depth) or microfluidic gradient mixers (complex microfluidic chip), this technique is not suffering such limitations. Young's modulus of the hydrogels was varied by changing the total monomer concentration of the hydrogel precursor solution.

View Article and Find Full Text PDF

We investigated substrate dependent paracrine signaling between subpopulations of bone marrow stromal cells (BMSCs) that may affect the formation, or perhaps malformation, of the regenerating tendon to bone enthesis. Polyacrylamide substrates approximating the elastic modulus of tendon granulation tissue and the osteoid of healing bone (10-90 kPa) were functionalized with whole length fibronectin (Fn), type-I collagen (Col), or a mixed ligand solution (Fn/Col), and BMSCs were cultured in growth media alone or media supplemented with soluble Col or Fn. More rigid substrates with a narrow mechanical gradient (70-90 kPa) robustly induced osteogenic cell differentiation when functionalized with either Col or Fn.

View Article and Find Full Text PDF

Traditional tissue regeneration approaches to activate cell behaviors on biomaterials rely on the use of extracellular-matrix-based or soluble growth-factor cues. In this article, a novel approach is highlighted to dynamically steer cellular phenomena such as cell motility based on nanoscale substratum features of biological ligands. Albumin-derived nanocarriers (ANCs) with variable nanoscale-size features are functionalized with fibronectin III9-10 matrix ligands, and their effects on primary human keratinocyte activation are investigated.

View Article and Find Full Text PDF

Various micro-devices have been used to assess single cell mechanical properties. Here, we designed and implemented a novel, mechanically actuated, two dimensional cell culture system that enables a measure of cell stiffness based on quantitative functional imaging of cell-substrate interaction. Based on parametric finite element design analysis, we fabricated a soft (5 kPa) polydimethylsiloxane (PDMS) cell substrate coated with collagen-I and fluorescent micro-beads, thus providing a favorable terrain for cell adhesion and for substrate deformation quantification, respectively.

View Article and Find Full Text PDF

Substrates with mechanical property gradients and various extracellular matrix ligand loadings were evaluated for their ability to direct bone marrow stromal cell differentiation along osteogenic and tenogenic lineages. After verifying reproducible mechanical compliance characteristics of commercial hydrogel gradient substrates, substrates were functionalized with whole length fibronectin or collagen, both of which are found in skeletal structures and are relevant to cell-matrix signalling. Bone marrow stromal cells were seeded onto the substrates in growth media and cultured first to examine cell attachment and morphology, indicating higher levels of attachment on collagen substrates after 1h, and increased spreading and organization trends after 24h.

View Article and Find Full Text PDF

Although molecular and physical mechanisms of fibroblast matrix assembly have been widely investigated, the role of adhesive ligand presentation on matrix assembly has only been recently probed (Pereira et al. Tissue Eng., 2007).

View Article and Find Full Text PDF

Tissue engineering aims to regenerate new biological tissue for replacing diseased or injured tissues. We propose a new approach to accelerate the deposition of cell-secreted matrix proteins into extracellular matrix fibrils. We examined whether dynamic substrates with nanoscale ligand features allowing for alpha5beta1 integrin recruiting, cellular tension generation, and alpha5beta1 integrin mobility would enhance fibronectin matrix assembly in a ligand model system that is routinely not sufficient for its induction.

View Article and Find Full Text PDF

Cell-adhesive ligands organized on nanoscale synthetic biomaterials can potentially recapitulate the nanoscale organization of extracellular matrix and the consequent effects of cell dynamics. In this study, 100 nm albumin nanocarriers (ANC) were fabricated to serve as nanoscale organizational units for a well-defined ligand, the recombinant fragment from fibronectin comprised of the RGD-containing module 10 and the synergy-region-containing module 9. Conventional protein conjugation chemistry was employed to fabricate nanocarriers with increasing levels of displayed ligand.

View Article and Find Full Text PDF

The regulation of cell motility on ligand-adsorbed poly(ethylene glycol) (PEG)-based polymeric biomaterials is governed by variables that are not well characterized. In this report, we examined keratinocyte migratory responsiveness to PEG-variant tyrosine-derived polycarbonates adsorbed with equivalent levels of the cell adhesion ligand, fibronectin. The equivalently adsorbed ligand adopted differential distributions, confirmed via atomic force microscopy, and the total number of exposed cell-binding domains (CBD), quantified through immunosorbent fluorometry, varied as a function of PEG concentration.

View Article and Find Full Text PDF