Advances in mobile electronics and telecommunication systems along with 5G technologies have been escalating the electromagnetic interference (EMI) problem in recent years. Graphene-based material systems such as pristine graphene, graphene-polymer composites and other graphene-containing candidates have been shown to provide adequate EMI shielding performance. Besides achieving the needed shielding effectiveness (SE), the method of applying the candidate shielding material onto the object in need of protection is of enormous importance due to considerations of ease of application, reduced logistics and infrastructure, rapid prototyping and throughput, versatility to handle both rigid and flexible substrates and cost.
View Article and Find Full Text PDFMiniaturization of electronic devices and the advancement of Internet of Things pose exciting challenges to develop technologies for patterned deposition of functional nanomaterials. Printed and flexible electronic devices and energy storage devices can be embedded onto clothing or other flexible surfaces. Graphene oxide (GO) has gained much attention in printed electronics due its solution processability, robustness, and high electrical conductivity in the reduced state.
View Article and Find Full Text PDFThis study presents the morphological and chemical modification of the cell structure of aerosolized Escherichia coli treated with a dielectric barrier discharge (DBD). Exposure to DBD results in severe oxidation of the bacteria, leading to the formation of hydroxyl groups and carbonyl groups and a significant reduction in amine functionalities and phosphate groups. Near edge x-ray absorption fine structure (NEXAFS) measurements confirm the presence of additional oxide bonds upon DBD treatment, suggesting oxidation of the outer layer of the cell wall.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2014
Controlled integration of features that enhance the analytical performance of a sensor chip is a challenging task in the development of paper sensors. A critical issue in the fabrication of low-cost biosensor chips is the activation of the device surface in a reliable and controllable manner compatible with large-scale production. Here, we report stable, well-adherent, and repeatable site-selective deposition of bioreactive amine functionalities and biorepellant polyethylene glycol-like (PEG) functionalities on paper sensors by aerosol-assisted, atmospheric-pressure, plasma-enhanced chemical vapor deposition.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2014
We present a novel approach for the room-temperature fabrication of conductive traces and their subsequent site-selective dielectric encapsulation for use in flexible electronics. We have developed an aerosol-assisted atmospheric pressure plasma-based deposition process for efficiently depositing materials on flexible substrates. Silver nanowire conductive traces and silicon dioxide dielectric coatings for encapsulation were deposited using this approach as a demonstration.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
August 2014
The surface properties of the electrode materials play a crucial role in determining the performance and efficiency of energy storage devices. Graphene oxide and nanostructures of 3d transition metal oxides were synthesized for construction of electrodes in supercapacitors, and the electronic structure and oxidation states were probed using near-edge X-ray absorption fine structure. Understanding the chemistry of graphene oxide would provide valuable insight into its reactivity and properties as the graphene oxide transformation to reduced-graphene oxide is a key step in the synthesis of the electrode materials.
View Article and Find Full Text PDFA label-free biosensor is presented using carbon nanofiber (CNF) nanoelectrode arrays for the detection of cardiac troponin-I in the early diagnosis of myocardial infarction. Immobilization of anti-cTnI Ab on CNFs and the detection of human-cTnI were examined using electrochemical impedance spectroscopy and cyclic voltammetry techniques. Each step of the modification process was monitored, and the results show changes in electrical capacitance or resistance to charge transfer due to the specificity of corresponding adsorption of Ab-Ag interaction.
View Article and Find Full Text PDFHerein a simple analytical method is presented for the characterization of biomolecule adsorption on cyclo olefin polymer (COP, trade name: Zeonor(®)) substrates which are widely used in microfluidic lab-on-a-chip devices. These Zeonor(®) substrates do not possess native functional groups for specific reactions with biomolecules. Therefore, depending on the application, such substrates must be functionalized by surface chemistry methods to either enhance or suppress biomolecular adsorption.
View Article and Find Full Text PDFSilver thin films are well known as the most sensitive material for surface plasmon resonance (SPR) based analysis. However, the use of silver for this purpose is limited by three main issues, namely poor adhesion to plastic substrates, chemical instability in both air and aqueous environments and hence the difficulty in functionalizing the silver coated substrate for immobilizing biomolecular ligands by conventional liquid phase methods. In this work, we have successfully addressed these problems using gas-phase coating processes.
View Article and Find Full Text PDFWe report the controlled diffusion of gas-phase high-reactivity chemical species into long polymeric microcavities to form glass-like, low-permeability barrier films on the interior surfaces of the microcavities. Reactive species created from fragmentation of O(2) and hexamethyldisiloxane (HMDSO) in a radio-frequency (RF) plasma environment are allowed to diffuse into the microcavities of polydimethylsiloxane (PDMS), where surface reactions lead to the formation of an effective, glass-like thin-film barrier. Reactive species including silicon radicals and elemental oxygen maintain their reactivity for sufficient times (up to 7000 s) and survive the random diffusional walk through the microcavities to form glass barriers as much as 65 mm from the cavity entrance.
View Article and Find Full Text PDFHerein we report on a preparation and performance of stable, hydrophilic and biocompatible polymeric material suitable for functionalization of disposable substrates used in biosensors. This new material features COOH surface groups cross-linked with ethylene glycol molecules and was prepared in situ on disposable, plastic substrate by high-throughput and environmentally friendly technique called plasma-enhanced chemical vapor deposition (PECVD). The film is grafted to the plasma activated plastic by sequential deposition of tetraethylorthosilicate, forming a bonding layer, and mixed vapors of acrylic acid and diethyleneglycol dimethylether (AA/PEG) that provide the desired functional groups forming a sensing, contact layer.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2011
The surface functionalization of a noble metal is crucial in a surface plasmon resonance-based biomolecular detection system because the interfacial coating must retain the activity of immobilized biomolecules while enhancing the optimal loading. We present here a one-step, room-temperature, high-speed, gas-phase plasma polymerization process for functionalizing gold substrates using siloxane as an adhesion layer and acrylic acid as a functional layer. Siloxane- and thiol-based coatings were compared for their performance as adhesion and the interfacial layer for subsequent functionalization.
View Article and Find Full Text PDFPoly(methyl methacrylate) (PMMA) flow-cells containing microwells were deposited with different nonspecific binding blocking agents, namely, bovine serum albumin (BSA), cationic lipid (DOTAP:DOPE) and diethylene glycol dimethyl ether (DEGDME). Water contact angle (WCA) and atomic force microscope (AFM) measurements were carried out to confirm the successful depositions of BSA, DOTAP, and DEGDME onto the PMMA surfaces. Fluorescent intensity measurements were performed to evaluate the degree of nonspecific adsorption of Cy5-labeled anti-IgG proteins onto plain and oxygen plasma-treated (PT) PMMA flow-cells as well as PMMA flow-cells deposited with different above-mentioned blocking agents.
View Article and Find Full Text PDFJ Colloid Interface Sci
February 2011
We report a method for studying nanoparticle-biosensor surface interactions based on total internal reflection fluorescence (TIRF) microscopy. We demonstrate that this simple technique allows for high throughput screening of non-specific adsorption (NSA) of nanoparticles on surfaces of different chemical composition. Binding events between fluorescent nanoparticles and functionalized Zeonor® surfaces are observed in real-time, giving a measure of the attractive or repulsive properties of the surface and the kinetics of the interaction.
View Article and Find Full Text PDFWe report a label-free optical detection technique, called total internal reflection ellipsometry (TIRE), which can be applied to study the interactions between biomolecules and a functionalized polymer surface. Zeonor (ZR), a cycloolefin polymer with low autofluorescence, high optical transmittance and excellent chemical resistance, is a highly suitable material for optical biosensor platforms owing to the ease of fabrication. It can also be modified with a range of reactive chemical groups for surface functionalization.
View Article and Find Full Text PDFMany current designs in biomedical diagnostics devices are based on the use of low cost, disposable, easy-to-fabricate chips made of plastic material, typically a cyclo-olefin polymer (COP). Low autofluorescence properties of such material, among others, make it ideal substrate for fluorescence-based applications. Functionalization of this plastic substrate for biomolecule attachment is therefore of great importance and the quality of films produced on such surface have often a significant influence on the performance of the device.
View Article and Find Full Text PDFJ Colloid Interface Sci
August 2010
In this paper, a new, fast, reproducible technique for atomic force microscopy (AFM) tips functionalization used for chemical interaction measurements is described. Precisely, the deposition of an aminated precursor is performed through plasma-enhanced chemical vapor deposition (PECVD) in order to create amine functional groups on the AFM tip and cantilever. The advantages of the precursor, aminopropyltriethoxysilane (APTES), were recently demonstrated for amine layer formation through PECVD deposition on polymeric surfaces.
View Article and Find Full Text PDFThe surface science of bioassay devices is of great importance in the development of modern diagnostic platforms. The quality of surface is one of the most important elements of the device, often governing the background response, hence controlling the sensitivity of an assay. Detailed surface characterization and analysis are imperative for the preparation of reproducible coatings with desired properties.
View Article and Find Full Text PDF