The microparticle quality and reproducibility of Li(NiCoMn)O (NCM811) cathode materials are important for Li-ion battery performance but can be challenging to control directly from synthesis. Here, a scalable reproducible synthesis process is designed based on slug flow to rapidly generate uniform micron-size spherical-shape NCM oxalate precursor microparticles at 25-34 °C. The whole process takes only 10 min, from solution mixing to precursor microparticle generation, without needing aging that typically takes hours.
View Article and Find Full Text PDFLi[NiCoMn]O (LNCMO811) is the most studied cathode material for next-generation lithium-ion batteries with high energy density. However, available synthesis methods are time-consuming and complex, restricting their mass production. A scalable manufacturing process for producing NCM811 hydroxide precursors is vital for commercialization of the material.
View Article and Find Full Text PDFThe solar thermochemical CO splitting (CDS) is scrutinized via a redox ZnO/Zn cycle. The second law efficiency analysis is carried out by acquiring the required thermodynamic data from HSC Chemistry software. The main focus of this study is to explore the influence of reduction temperature (T), molar flow rate of inert sweep gas (n˙), and energy required for the gas separation on the solar-to-fuel energy conversion efficiency (η) of the ZnO/Zn cycle.
View Article and Find Full Text PDFWhereas recent clinical studies report metastatic melanoma survival rates high as 30-50%, many tumors remain nonresponsive or become resistant to current therapeutic strategies. Analyses of The Cancer Genome Atlas (TCGA) skin cutaneous melanoma (SKCM) data set suggests that a significant fraction of melanomas potentially harbor gain-of-function mutations in the gene that encodes for the ErbB4 receptor tyrosine kinase. In this work, a drug discovery strategy was developed that is based on the observation that the Q43L mutant of the naturally occurring ErbB4 agonist Neuregulin-2beta (NRG2β) functions as a partial agonist at ErbB4.
View Article and Find Full Text PDFNeutral aqueous zinc-air batteries (ZABs) are an emerging type of energy devices with substantially elongated lifetime and improved recyclability compared to conventional alkaline ZABs. However, their development is impeded by the lack of robust bifunctional catalyst at the air-electrode for the oxygen evolution reaction (OER) and the oxygen reduction reaction (ORR). Here, we report the controlled synthesis of NiFeO/FeNiS heterostructured nanosheets (HNSs) that are highly efficient in catalyzing OER and ORR, therefore enabling neutral rechargeable ZABs.
View Article and Find Full Text PDFThe ever-increasing global energy consumption necessitates the development of efficient energy conversion and storage devices. Nitrogen-doped porous carbons as electrode materials for supercapacitors feature superior electrochemical performances compared to pristine activated carbons. Herein, a facile synthetic strategy including solid-state mixing of benzimidazole as an inexpensive single-source precursor of nitrogen and carbon and zinc chloride as a high temperature solvent/activator followed by pyrolysis of the mixture ( = 700-1000 °C under Ar) is introduced.
View Article and Find Full Text PDFWe report here a novel observation that immobilization of heparinase I on CNBr-activated Sepharose results in heparin degradation properties that are different from heparinase I in the free solution form. Studies over a range of pHs (5-8) and temperatures (5-50°C) as well as under batch and flow conditions show that immobilized heparinase 1 displays altered pH and temperature optima, and a higher propensity for generation of longer chains (hexa- and octa-) with variable sulfation as compared to that in the free form, which is known to yield disaccharides. The immobilized enzyme retained good eliminase activity over at least five cycles of reuse.
View Article and Find Full Text PDFHeparin is a member of the glycosaminoglycan (GAG) family composed of glucosamine and uronic acid units containing O-sulfo, N-acetyl and N-sulfo groups, which are alternating in the chain and linked by 1→4 manner. It is a naturally occurring anticoagulant that prevents the formation of clots and their growth within blood. Certain low molecular weight heparins (LMWHs) are considered as better therapeutic agents than natural heparin because of the reduced side effects and smaller risk of bleeding.
View Article and Find Full Text PDFMagnetically responsive oil-in-water emulsions are effectively stabilized by a halloysite nanotube supported superparamagnetic iron oxide nanoparticle system. The attachment of the magnetically functionalized halloysite nanotubes at the oil-water interface imparts magnetic responsiveness to the emulsion and provides a steric barrier to droplet coalescence leading to emulsions that are stabilized for extended periods. Interfacial structure characterization by cryogenic scanning electron microscopy reveals that the nanotubes attach at the oil-water interface in a side on-orientation.
View Article and Find Full Text PDFNaturally occurring halloysite clay nanotubes are effective in stabilizing oil-in-water emulsions and can serve as interfacially-active vehicles for delivering oil spill treating agents. Halloysite nanotubes adsorb at the oil-water interface and stabilize oil-in-water emulsions that are stable for months. Cryo-scanning electron microscopy (Cryo-SEM) imaging of the oil-in-water emulsions shows that these nanotubes assemble in a side-on orientation at the oil-water interface and form networks on the interface through end-to-end linkages.
View Article and Find Full Text PDFBioresour Technol
September 2013
Switchgrass was liquefied in supercritical water (SCW) using Ca(HCOO)2 as an in-situ source of hydrogen to enhance deoxygenation and the quality of the biocrude obtained. In SCW, Ca(HCOO)2 produces hydrogen via decomposition and hydrolysis reactions, and simultaneously switchgrass hydrolyzes to form oxygenated hydrocarbon compounds. Because of the close proximity of the newly-formed hydrogen and active hydrocarbons, hydrodeoxygenation occurred whereby some of the oxygenated compounds were upgraded by the removal of oxygen in the form of water.
View Article and Find Full Text PDFAAPS PharmSciTech
December 2012
Cocrystals of itraconazole, an antifungal drug with poor bioavailability, and succinic acid, a water-soluble dicarboxylic acid, were formed by gas antisolvent (GAS) cocrystallization using pressurized CO(2) to improve itraconazole dissolution. In this study, itraconazole and succinic acid were simultaneously dissolved in a liquid solvent, tetrahydrofuran, at ambient conditions. The solution was then pressurized with CO(2), which decreased the solvating power of tetrahydrofuran and caused crystallization of itraconazole-succinic acid cocrystals.
View Article and Find Full Text PDFMicroalgae are considered as an intriguing candidate for biofuel production due to their high biomass yield. Studies on bio-oil production through fast pyrolysis and upgrading to hydrocarbon fuels using algal biomass are limited as compared to other terrestrial biomass. Therefore, in this study, a fresh water green alga, Chlorella vulgaris, was taken for pyrolysis study.
View Article and Find Full Text PDFThe ever-increasing growth of biorefineries is expected to produce huge amounts of lignocellulosic biochar as a byproduct. The hydrothermal carbonization (HTC) process to produce biochar from lignocellulosic biomass is getting more attention due to its inherent advantage of using wet biomass. In the present study, biochar was produced from switchgrass at 300 °C in subcritical water and characterized using X-ray diffraction, fourier transform infra-red spectroscopy, scanning electron micrcoscopy, and thermogravimetric analysis.
View Article and Find Full Text PDFThis study is focused on hydrocarbon production through changing carrier gas and using zeolite catalysts during pyrolysis. A large reduction in high molecular weight, oxygenated compounds was noticed when the carrier gas was changed from helium to hydrogen during pyrolysis. A catalytic pyrolysis was conducted using two different methods based on how the biomass and catalysts were contacted together.
View Article and Find Full Text PDFItraconazole (ITZ) microflakes were produced by supercritical antisolvent (SAS) method and simultaneously mixed with pharmaceutical excipients in a single step to prevent drug agglomeration. Simultaneous ITZ particle formation and mixing with fast-flo lactose (FFL) was performed in a high-pressure stirred vessel at 116 bar and 40 °C by the SAS-drug excipient mixing (SAS-DEM) method. The effects of stabilizers, such as sodium dodecyl sulfate and poloxamer 407 (PLX), on particle formation and drug dissolution were studied.
View Article and Find Full Text PDFA fast pyrolysis process produces a high yield of liquid (a.k.a.
View Article and Find Full Text PDFMicroparticles of a poorly water-soluble model drug, nevirapine (NEV) were prepared by supercritical antisolvent (SAS) method and simultaneously deposited on the surface of excipients such as lactose and microcrystalline cellulose in a single step to reduce drug-drug particle aggregation. In the proposed method, termed supercritical antisolvent-drug excipient mixing (SAS-DEM), drug particles were precipitated in supercritical CO(2) vessel containing excipient particles in suspended state. Drug/excipient mixtures were characterized for surface morphology, crystallinity, drug-excipient physico-chemical interactions, and molecular state of drug.
View Article and Find Full Text PDFMicrocrystalline cellulose (MCC) was pretreated with subcritical water in a continuous flow reactor for enhancing its enzymatic reactivity with cellulase enzyme. Cellulose/water suspension was mixed with subcritical (i.e.
View Article and Find Full Text PDFDissolution rate of a poorly water-soluble drug, fenofibrate, is increased by adsorbing the drug onto silica. The adsorption is achieved by first dissolving the drug in supercritical carbon dioxide and then depressurizing the solution onto silica. Loadings of up to 27.
View Article and Find Full Text PDFPurpose: Our purpose was to produce nanoparticles of a hydrophilic drug with use of supercritical carbon dioxide (CO2), encapsulate the obtained nanoparticles into polymer microparticles with use of an anhydrous method and study their sustained in vitro drug release.
Methods: The hydrophilic drug, dexamethasone phosphate, is dissolved in methanol and injected in supercritical CO2 with an ultrasonic field for enhanced molecular mixing (supercritical antisolvent technique with enhanced mass transfer [SAS-EM]). Supercritical CO2 rapidly extracts methanol leading to instantaneous precipitation of drug nanoparticles.
Nanoparticles are of significant importance in drug delivery. Rapid expansion of supercritical solution (RESS) process can produce pure and high-quality drug particles. However, due to extremely low solubility of polar drugs in supercritical CO(2) (sc CO(2)), RESS has limited commercial applicability.
View Article and Find Full Text PDFThe synthesis, characterization and degradation of a hybrid chitosan (CTS)/glycidyl methacrylate (GMA) material are reported. These versatile materials (natural-synthetic materials) are potential candidates for dental restoratives. All materials were characterized by infrared spectroscopy (FT-IR), X-ray diffraction and thermal (DSC) analysis.
View Article and Find Full Text PDF