Publications by authors named "Ram Ambre"

Carbon monoxide (CO), along with nitric oxide and hydrogen sulfide, is one of a trinity of known gasotransmitters, or endogenously produced gaseous molecules that signal and regulate a panoply of physiological functions. CO releasing molecules (CORMs) are chemical tools that enable the study and application of this ephemeral gas, that, ideally, release CO on-demand when externally stimulated. Surveying the available triggers, photolysis is potentially advantageous: It is contactless and grants practitioners unparalleled spatial and temporal control.

View Article and Find Full Text PDF

We report an efficient and mild tandem catalytic process for the synthesis of functionalized pyrrole-3-carbaldehydes. These compounds were obtained by a one-pot three-component reaction of 5-bromo-1,2,3-triazine, terminal alkynes, and primary amines via a palladium-catalyzed Sonogashira coupling reaction, and then annulation through a silver-mediated reaction of the resulting alkynyl 1,2,3-triazines allowed for access to the multifunctionalized pyrrole-3-carbaldehydes.

View Article and Find Full Text PDF

An exclusive synthesis of benzo-oxazine, benzo-oxazepine, and benzo-oxazocine from aryl propanal and 2-(hydroxyamino)phenyl alcohol under metal-free conditions is described. O atom transfer and formation of new C═O, C-N, and C-O bonds occur at room temperature to form six-, seven-, and eight-membered heterocycles under one-pot reaction conditions without using an external oxidant and base. The photophysical properties are studied using ultraviolet-visible absorption and photoluminescence.

View Article and Find Full Text PDF

A simple Ni(cod) and carbene mediated strategy facilitates the efficient catalytic cross-coupling of methoxyarenes with a variety of organoboron reagents. Directing groups facilitate the activation of inert C-O bonds in under-utilized aryl methyl ethers enabling their adaptation for C-C cross-coupling reactions as less toxic surrogates to the ubiquitous haloarenes. The method reported enables C-C cross-coupling with readily available and economical arylboronic acid reagents, which is unprecedented, and compares well with other organoboron reagents with similarly high reactivity.

View Article and Find Full Text PDF

Iron porphyrins Fe-pE, Fe-mE, and Fe-oE were synthesized and their electrochemical behavior for CO reduction to CO has been investigated. The controlled potential electrolysis of Fe-mE gave exclusive 65% Faradaic efficiency (FE) whereas Fe-oE achieved quasi-quantitative 98% FE (2% H) for CO production.

View Article and Find Full Text PDF

We report characterizations and device performance for dye-sensitized solar cells using cis- and trans-isomers of 2D-π-2A zinc porphyrins with carboxyphenyl and thienyl groups in their meso-positions. Under identical experimental conditions with similar dye loadings, we observed overall power conversion efficiencies of 2.44% and 0.

View Article and Find Full Text PDF

Porphyrin sensitizers containing meta- and para-carboxyphenyl groups in their meso positions have been synthesized and investigated for their performance in dye-sensitized solar cells (DSSCs). The superior performance of para-derivative compared to meta-derivative porphyrins was revealed by optical spectroscopy, electrochemical property measurements, density functional theory (DFT) calculations, attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, incident photon-to-current conversion efficiency (IPCE), electrochemical impedance spectroscopy (EIS), and stability performance. Absorption spectra of para-carboxyphenyl-substituted porphyrins on TiO2 show a broader Soret band compared to meta-carboxyphenyl-substituted porphyrins.

View Article and Find Full Text PDF

Zinc porphyrins possessing three p-carboxyphenyl anchoring groups with various substituents were prepared by a facile three-step route in good yields. Zn1NH3A with electron donating and anti-aggregation meso substituents has achieved the highest efficiency of 6.10%.

View Article and Find Full Text PDF

A series of porphyrin sensitizers that featured two electron-donating groups and dual anchoring groups that were connected through a porphine π-bridging unit have been synthesized and successfully applied in dye-sensitized solar cells (DSSCs). The presence of electron-donating groups had a significant influence on their spectroscopic, electrochemical, and photovoltaic properties. Overall, the dual anchoring groups gave tunable electronic properties and stronger attachment to TiO2 .

View Article and Find Full Text PDF

The unusual alcohol mediated formation of 4-oxo-2-aryl-4H-chromene-3-carboxylate (flavone-3-carboxylate) derivatives from 4-hydroxycoumarins and β-nitroalkenes in an alcoholic medium is described. The transformation occurs via the in situ formation of a Michael adduct, followed by the alkoxide ion mediated rearrangement of the intermediate. The effect of the different alcohol and nonalcohol media on the reaction was investigated.

View Article and Find Full Text PDF