Publications by authors named "Raluca-Nicoleta Darie-Nita"

Conductive hydrogels are an appealing class of "smart" materials with great application potential, as they combine the stimuli-responsiveness of hydrogels with the conductivity of magnetic fillers. However, fabricating multifunctional conductive hydrogels that simultaneously exhibit conductivity, self-healing, adhesiveness, and anti-freezing properties remains a significant challenge. To address this issue, we introduce here a freeze-thawing approach to develop versatile, multiresponsive composite cryogels able to preserve their features under low-temperature conditions.

View Article and Find Full Text PDF

Hydrogel features can be designed and optimized using different crosslinking agents to meet specific requirements. In this regard, the present work investigates the physico-chemical features of cellulose-based hydrogels, designed by using different epoxy crosslinkers from the same glycidyl family, namely epichlorohydrin (ECH), 1,4-butanediol diglycidyl ether (BDDE), and trimethylolpropane triglycidyl ether (TMPTGE). The effect of the crosslinker's structure (from simple to branched) and functionality (mono-, bi- and tri-epoxy groups) on the hydrogels' features was studied.

View Article and Find Full Text PDF

In recent years, increasing interest has been accorded to polyester-based polymer microstructures, driven by their promising potential as advanced drug delivery systems. This study presents the preparation and characterization of new polymeric microparticles based on poly(ethylene brassylate-co-squaric acid) loaded with norfloxacin, a broad-spectrum antibiotic. Polymacrolactone was synthesised in mild conditions through the emulsion polymerization of bio-based and renewable monomers, ethylene brassylate, and squaric acid.

View Article and Find Full Text PDF

Wildfires are becoming more intense and more frequent, ravaging the habitations and ecosystems in their path. One solution to reducing the risk of damage to buildings and other structures during a fire event is the use of fire-retardant coatings that can stop or slow down the spread of flames, especially for textile materials. The present study focuses on the preparation and application of halogen-free boron/bentonite-based polymeric fire-retardant (FR) hybrid coating formulations for fabrics such as cotton (CO) and polyester (PE) fibers.

View Article and Find Full Text PDF
Article Synopsis
  • An optimal wound dressing should be biocompatible, biodegradable, maintain moisture, allow for exudate removal, have antibacterial properties, and promote healing.
  • Researchers designed a multifunctional hydrogel using cellulose and chemically modified lignin that exhibits good biocompatibility, antibacterial features, and controlled drug release capabilities.
  • Experimental results indicated that the new CLE hydrogels showed increased swelling, better drug encapsulation and release, antibacterial properties, and improved mucoadhesion, making them promising candidates for oral wound dressings.
View Article and Find Full Text PDF

Anthropogenic microplastics (MPs) and nanoplastics (NPs) are ubiquitous pollutants found in aquatic, food, soil and air environments. Recently, drinking water for human consumption has been considered a significant pathway for ingestion of such plastic pollutants. Most of the analytical methods developed for detection and identification of MPs have been established for particles with sizes > 10 μm, but new analytical approaches are required to identify NPs below 1 μm.

View Article and Find Full Text PDF

This study aimed to evaluate the effect of the synthesis parameters and the incorporation of natural polyphenolic extract within hydrogel networks on the mechanical and morphological properties of physically cross-linked xanthan gum/poly(vinyl alcohol) (XG/PVA) composite hydrogels prepared by multiple cryo-structuration steps. In this context, the toughness, compressive strength, and viscoelasticity of polyphenol-loaded XG/PVA composite hydrogels in comparison with those of the neat polymer networks were investigated by uniaxial compression tests and steady and oscillatory measurements under small deformation conditions. The swelling behavior, the contact angle values, and the morphological features revealed by SEM and AFM analyses were well correlated with the uniaxial compression and rheological results.

View Article and Find Full Text PDF

The bioactivity of the versatile biodegradable biopolymer poly(lactic acid) (PLA) can be obtained by combining it with natural or synthetic compounds. This paper deals with the preparation of bioactive formulations involving the melt processing of PLA loaded with a medicinal plant (sage) and an edible oil (coconut oil), together with an organomodifed montmorillonite nanoclay, and an assessment of the resulting structural, surface, morphological, mechanical, and biological properties of the biocomposites. By modulating the components, the prepared biocomposites show flexibility, both antioxidant and antimicrobial activity, as well as a high degree of cytocompatibility, being capable to induce the cell adherence and proliferation on their surface.

View Article and Find Full Text PDF

In vitro tumor spheroids have proven to be useful 3D tumor culture models for drug testing, and determining the molecular mechanism of tumor progression and cellular interactions. Therefore, there is a continuous search for their industrial scalability and routine preparation. Considering that hydrogels are promising systems that can favor the formation of tumor spheroids, our study aimed to investigate and develop less expensive and easy-to-use amorphous and crosslinked hydrogels, based on natural compounds such as sodium alginate (NaAlg), aloe vera (AV) gel powder, and chitosan (CS) for tumor spheroid formation.

View Article and Find Full Text PDF

Bio-based plasticizers derived from renewable resources represent a sustainable replacement for petrochemical-based plasticizers. Vegetable oils are widely available, non-toxic and biodegradable, resistant to evaporation, mostly colorless and stable to light and heat, and are a suitable alternative for phthalate plasticizers. Plasticized poly(lactic acid) (PLA) materials containing 5 wt%, 10 wt%, 15 wt% and 20 wt% natural castor oil (R) were prepared by melt blending to improve the ductility of PLA.

View Article and Find Full Text PDF

Innovative composites based on polypropylene waste impurified cu HDPE (PPW) combined with two thermoplastic block-copolymers, namely styrene-butadiene-styrene (SBSBC) and styrene-isoprene-styrene (SISBC) block-copolymers, and up to 10 wt% nano-clay, were obtained by melt blending. SBSBC and SISBC with almost the same content of polystyrene (30 wt%) were synthesized by anionic sequential polymerization and used as compatibilizers for PPW. Optical microscopy evaluation of the PPW composites showed that the n-clay was encapsulated into the elastomer.

View Article and Find Full Text PDF

Novel hydrogels were prepared starting from different cellulose allomorphs (cellulose I, II, and III), through a swelling stage in 8.5% NaOH aqueous solution, followed by freezing at low temperature (−30 °C), for 24 h. After thawing at room temperature, the obtained gels were chemical cross-linked with epichlorohydrin (ECH), at 85 °C.

View Article and Find Full Text PDF

This article presents current possibilities of using polyester-based materials in hard and soft tissue engineering, wound dressings, surgical implants, vascular reconstructive surgery, ophthalmology, and other medical applications. The review summarizes the recent literature on the key features of processing methods and potential suitable combinations of polyester-based materials with improved physicochemical and biological properties that meet the specific requirements for selected medical fields. The polyester materials used in multiresistant infection prevention, including during the COVID-19 pandemic, as well as aspects covering environmental concerns, current risks and limitations, and potential future directions are also addressed.

View Article and Find Full Text PDF

Core-shell acrylic copolymer latexes containing bio resourced itaconic acid with different compositions in respect with the core and shell segments were synthesized, characterized, and applied as coating materials for leather. The purpose of the study was to evidence the high coating performance of the latexes when the ratio of the core/shell differed from 90/10 to 50/50 wt %. The copolymers were prepared via emulsion copolymerization technique and the products were isolated and characterized by means of structure identity, thermal behavior (DSC and DMTA), coating performance.

View Article and Find Full Text PDF

Several recipes based on PLA, bio-plasticizers, and active agents such as vitamin E and cold-pressed rosehip seed oil encapsulated into chitosan by the emulsion method named here as chitosan modified (CS-M) were elaborated by melt compounding for food packaging applications. Resulted biocomposites have been investigated from the point of view of physical-mechanical, thermal, barrier, antimicrobial, and antioxidant properties to select the formulations with the optimum features to produce food trays and films for packaging applications. The obtained results showed that the elaborated formulations exhibit tensile strength and flexibility dependent on their composition being either rigid or flexible, as well as antimicrobial and antioxidant activity, which will potentially lead to prolonged use for food packaging.

View Article and Find Full Text PDF

Hydrogel-based wound dressings have been intensively studied as promising materials for wound healing and care. The mixed-mode thiol-acrylate photopolymerization is used in this paper for alginate/poloxamer hydrogels formation. First, the alginate was modified with thiol groups using the esterification reaction with cysteamine, and second, the terminal hydroxyl groups of poloxamer were esterified with acryloyl chloride to introduce polymerizable acrylate groups.

View Article and Find Full Text PDF

Different biomass wastes were successfully blended with starch and Ecoflex® viz. poly(butylene adipate-co-terephthalate), without glycerol addition, to obtain biocomposite materials. The mechanical properties, as well as thermal and surface properties, of the developed composites were evaluated.

View Article and Find Full Text PDF

The purpose of the present study is to develop new multifunctional environmentally friendly materials having applications both in medical and food packaging fields. New poly(lactic acid) (PLA)-based multifunctional materials containing additives derived from natural resources like chitosan (CS) and rosemary extract (R) were obtained by melt mixing. Each of the selected components has its own specific properties such as: PLA is a biodegradable thermoplastic aliphatic polyester derived from renewable biomass, heat-resistant, with mechanical properties close to those of polystyrene and polyethylene terephthalate, and CS offers good antimicrobial activity and biological functions, while R significantly improves antioxidative action necessary in all applications.

View Article and Find Full Text PDF

Biopolymer nanocomposite films were prepared by casting film-forming emulsions based on chitosan/Tween 80/rosehip seed oil and dispersed montmorillonite nanoclay C30B. The effect of composition on structural, morphological characteristics and, mechanical, barrier, antimicrobial and antioxidant properties was studied. The presence of rosehip seed oil in chitosan films led to the formation of flexible films with improved mechanical, gas and water vapour barrier properties and antioxidant activity.

View Article and Find Full Text PDF
Article Synopsis
  • * The PLA/R biocomposites demonstrated increased thermoxidative stability and low permeability, making them suitable for food packaging applications while also showing good biocompatibility for human use.
  • * In vivo studies indicated that PLA/R materials produced similar health responses to control groups, enhancing their potential as biomaterials for various medical applications like tissue engineering and wound management.
View Article and Find Full Text PDF

The purpose of this study was to assess the biodegradation of poly(lactic acid) (PLA) and some plasticized PLA based systems by Trichoderma viride fungus, in liquid medium and controlled laboratory conditions. The studied systems were achieved using PLA, hydrolyzed collagen (HC) as biological macromolecules and other additives by melt processing procedure. PLA and the systems' biodegradability was examined by the weight losses of the samples (after 7 and 21 days of exposure) and FTIR-ATR, GPC, SEM analyses (after 21 fungus inoculation days).

View Article and Find Full Text PDF