Publications by authors named "Raluca Mateuca"

Cellular phenotypes can be applied as biomarkers to differentiate normal from abnormal biological -conditions. Several cytogenetic methods have been developed and allow the accurate detection of such phenotypic changes.Based on their mechanisms of formation, cellular phenotypes may be used either as biomarkers of exposure or as biomarkers of effect.

View Article and Find Full Text PDF

The cytokinesis-block micronucleus (CBMN) assay has since many years been applied for in vitro genotoxicity testing and biomonitoring of human populations. The standard in vitro/ex vivo micronucleus test is usually performed on human lymphocytes and has become a comprehensive method to assess genetic damage, cytostasis, and cytotoxicity. The predictive association between the frequency of micronuclei (MN) in cytokinesis-blocked lymphocytes and cancer risk has recently been demonstrated.

View Article and Find Full Text PDF

A pooled analysis of five biomonitoring studies was performed to assess the influence of hOGG1(326), XRCC1(399) and XRCC3(241) gene polymorphisms on micronuclei (MN) frequency in human peripheral blood lymphocytes, as measured by the ex vivo/in vitro cytokinesis-block micronucleus (CBMN) assay. Each study addressed a type of occupational exposure potentially able to induce DNA strand breakage (styrene, ionising radiation, cobalt/hard metal, welding fumes and inorganic arsenite compounds), and therefore MN, as a result of base excision repair and double-strand break repair deficiencies. The effect of genotype, age, exposure to genotoxic agents and smoking habit on MN induction was determined using Poisson regression analysis in 171 occupationally exposed male workers and in 132 non-exposed male referents.

View Article and Find Full Text PDF

A central question in risk assessment is whether newborns' susceptibility to mutagens is different from that of adults. Therefore we investigated whether genotype and/or the DNA strand break repair phenotype in combination with the MN assay would allow estimation of the relative sensitivity of a newborn as compared to his mother for oxidative DNA damage. We compared the in vitro genetic susceptibility for H2O2 in PBMC of 17 mother-newborn daughter pairs taking into account genotypes for relevant DNA repair (hOGG1, XRCC1, XRCC3, XPD) and folate metabolism (MTHFR) polymorphisms.

View Article and Find Full Text PDF

The influence of genetic polymorphisms in GSTM1 and GSTT1 genes on micronucleus frequencies in human peripheral blood lymphocytes was assessed through a pooled analysis of data from seven laboratories that did biomonitoring studies using the in vivo cytokinesis-block micronucleus assay. A total of 301 nonoccupationally exposed individuals (207 males and 94 females) and 343 workers (237 males and 106 females) occupationally exposed to known or suspected genotoxic substances were analyzed by Poisson regression. The results of the pooled analysis indicate that the GSTT1 null subjects had lower micronucleus frequencies than their positive counterparts in the total population (frequency ratio, 0.

View Article and Find Full Text PDF

Styrene oxide (SO), ethylene oxide (EO) and gamma-radiation (G) are agents with a well-described metabolism and genotoxicity. EPHX1 and GSTs play an important role in the detoxification of electrophiles and oxidative stress. Enzymes involved in base excision repair (hOGG1, XRCC1), in rejoining single strand breaks (XRCC1) and in repair of cross-links and chromosomal double strand breaks (XRCC3) might have an impact on genotoxicity as well.

View Article and Find Full Text PDF

Identification of higher risk individuals carrying genetic polymorphisms responsible for reduced DNA repair capacity has substantial preventive implications as these individuals could be targeted for cancer prevention. We have conducted a study to assess the predictivity of the OGG1, XRCC1 and XRCC3 genotypes and the in vitro single strand break repair phenotype for the induction of genotoxic effects. At the population level, a significant contribution of the OGG1 genotypes to the in vitro DNA strand break repair capacity was found.

View Article and Find Full Text PDF

A study on 44 workers exposed to styrene and 44 matched referents was performed in order to examine the influence of genetic polymorphisms in biotransformation and DNA repair enzymes on the levels of N-terminal hemoglobin adducts and genotoxicity biomarkers. Urinary mandelic acid concentration averaged 201.57 mg/g creatinine +/-148.

View Article and Find Full Text PDF