Background: Early detection of small cell lung cancer (SCLC) crucially demands highly reliable markers. Growing evidence suggests that extracellular vesicles carry tumor cell-specific cargo suitable as protein markers in cancer. Quantitative proteomic profiling of circulating microvesicles and exosomes can be a high-throughput platform for discovery of novel molecular insights and putative markers.
View Article and Find Full Text PDFBackground: Small cell lung cancer (SCLC) is a malignant disease with poor prognosis. At the time of diagnosis most patients are already in a metastatic stage. Current diagnosis is based on imaging, histopathology, and immunohistochemistry, but no blood-based biomarkers have yet proven to be clinically successful for diagnosis and screening.
View Article and Find Full Text PDFCarbon monoxide (CO) is the leading cause of death by poisoning worldwide. The aim was to explore the effects of mild and severe poisoning on blood gas parameters and metabolites. Eleven pigs were exposed to CO intoxication and had blood collected before and during poisoning.
View Article and Find Full Text PDFWound healing is a high energy demanding process that needs a good coordination of the mitochondria with glycolysis in the characteristic highly hypoxic environment. In diabetes, hyperglycemia impairs the adaptive responses to hypoxia with profound negative effects on different cellular compartments of wound healing. miR-210 is a hypoxia-induced microRNA that regulates cellular metabolism and processes important for wound healing.
View Article and Find Full Text PDFSerum, urine and tissue from a rat model of chronic kidney disease (CKD) were analysed using nuclear magnetic resonance (NMR) spectroscopy-based metabolomics methods, and compared with samples from sham operated rats. Both urine and serum were sampled at multiple timepoints, and the results have been reported elsewhere (https://doi.org/10.
View Article and Find Full Text PDFExhaled breath condensate (EBC) is safely collected in mechanically ventilated (MV) patients, but there are no guidelines regarding humidification of inhaled air during EBC collection. We investigated the influence of active and passive air humidification on EBC volumes obtained from MV patients. We collected 29 EBC samples from 21 critically ill MV patients with one condition of active humidification and four different conditions of non-humidification; 19 samples from 19 surgical MV patients with passive humidification and two samples from artificial lungs MV with active humidification.
View Article and Find Full Text PDFBackground: Oxygen is a liberally dosed medicine; however, too much oxygen can be harmful. In certain situations, treatment with high oxygen concentration is necessary, e.g.
View Article and Find Full Text PDFCardiovascular disease is the leading cause of death worldwide and cardiac surgery is a key treatment. This study explores metabolite changes as a consequence of ischemia-reperfusion due to cardiac surgery with the use of cardiopulmonary bypass (CPB). To describe the ischemia-reperfusion injury, metabolite changes were monitored in fifty patients before and after CPB at multiple time points.
View Article and Find Full Text PDFBackground: In our metabolomics studies we have noticed that repeated NMR acquisition on the same sample can result in altered metabolite signal intensities.
Aims: To investigate the reproducibility of repeated NMR acquisition on selected metabolites in serum and plasma from two large human metabolomics studies.
Methods: Two peak regions for each metabolite were integrated and changes occurring after reacquisition were correlated.
Introduction: Progressive chronic kidney disease (CKD) is an important cause of morbidity and mortality. It has a long asymptomatic phase, where routine blood tests cannot identify early functional losses, and therefore identifying common mechanisms across the many etiologies is an important goal.
Objectives: Our aim was to characterize serum, urine and tissue (kidney, lung, heart, spleen and liver) metabolomics changes in a rat model of CKD.
Cardiac surgery with cardiopulmonary bypass (CPB) causes an acute lung ischemia-reperfusion injury, which can develop to pulmonary dysfunction postoperatively. This sub-study of the Pulmonary Protection Trial aimed to elucidate changes in arterial blood gas analyses, inflammatory protein interleukin-6, and metabolites of 90 chronic obstructive pulmonary disease patients following two lung protective regimens of pulmonary artery perfusion with either hypothermic histidine-tryptophan-ketoglutarate (HTK) solution or normothermic oxygenated blood during CPB, compared to the standard CPB with no pulmonary perfusion. Blood was collected at six time points before, during, and up to 20 h post-CPB.
View Article and Find Full Text PDFPulmonary dysfunction is among the most frequent complications to cardiac surgeries. Exposure of blood to the cardiopulmonary bypass (CPB) circuit with subsequent lung ischemia-reperfusion leads to the production of inflammatory mediators and increases in microvascular permeability. The study aimed to elucidate histological, cellular, and metabolite changes following two lung protective regimens during CPB with Histidine-Tryptophan-Ketoglutarate (HTK) enriched or warm oxygenated blood pulmonary perfusion compared to standard regimen with no pulmonary perfusion.
View Article and Find Full Text PDFCardiovascular disease is the leading cause of death worldwide and patients with severe symptoms undergo cardiac surgery. Even after uncomplicated surgeries, some patients experience postoperative complications such as lung injury. We hypothesized that the procedure elicits metabolic activity that can be related to the disease progression, which is commonly observed two-three days postoperatively.
View Article and Find Full Text PDFBackground: Understanding the pathogenic role of extracellular vesicles (EVs) in disease and their potential diagnostic and therapeutic utility is extremely reliant on in-depth quantification, measurement and identification of EV sub-populations. Quantification of EVs has presented several challenges, predominantly due to the small size of vesicles such as exosomes and the availability of various technologies to measure nanosized particles, each technology having its own limitations.
Materials And Methods: A standardized methodology to measure the concentration of extracellular vesicles (EVs) has been developed and tested.
Background: Staphylococcus aureus gene expression has been sparsely studied in deep-sited infections in humans. Here, we characterized the staphylococcal transcriptome in vivo and the joint fluid metabolome in a prosthetic joint infection with an acute presentation using deep RNA sequencing and nuclear magnetic resonance spectroscopy, respectively. We compared our findings with the genome, transcriptome and metabolome of the S.
View Article and Find Full Text PDF