Publications by authors named "Ralph Wagner"

Niobium metal foils were heat-treated at 900°C under different conditions and in situ investigated with time-resolved X-ray absorption fine-structure (EXAFS and XANES) measurements. The present study aims to mimic the conditions usually applied for heat treatments of Nb materials used for superconducting radiofrequency cavities, in order to better understand the evolving processes during vacuum annealing as well as for heat treatments in controlled dilute gases. Annealing in vacuum in a commercially available cell showed a substantial amount of oxidation, so that a designated new cell was designed and realized, allowing treatments under clean high-vacuum conditions as well as under well controllable gas atmospheres.

View Article and Find Full Text PDF

The influence of the annealing atmosphere on the temperature induced phase separation of Ge oxide in GeO(x)/SiO(2) multilayers (x≈1), leading to size controlled growth of Ge nanocrystals, is explored by means of x-ray absorption spectroscopy at the Ge K-edge. Ge sub-oxides contained in the as-deposited multilayers diminish with increasing annealing temperature, showing complete phase separation at approximately 450 °C using inert N(2) ambient. The use of reducing H(2) in the annealing atmosphere influences the phase separation even at an early stage of the disproportionation.

View Article and Find Full Text PDF

X-ray absorption near the iron K edge (XANES) was used to investigate the characteristics of temperature-induced low-spin-to-high-spin change (SC) in metallo-supramolecular polyelectrolyte amphiphile complexes (PAC) containing FeN(6) octahedra attached to two or six amphiphilic molecules. Compared to the typical spin-crossover material Fe(phen)(2) (NCS)(2) XANES spectra of PAC show fingerprint features restricted to the near-edge region which mainly measures multiple scattering (MS) events. The changes of the XANES profiles during SC are thus attributed to the structure changes due to different MS path lengths.

View Article and Find Full Text PDF

The hard X-ray beamline BL8 at the superconducting asymmetric wiggler at the 1.5 GeV Dortmund Electron Accelerator DELTA is described. This beamline is dedicated to X-ray studies in the spectral range from approximately 1 keV to approximately 25 keV photon energy.

View Article and Find Full Text PDF