Publications by authors named "Ralph Tripp"

Unlabelled: We examined the effect of probenecid in regulating the ERK and JNK downstream MAPK pathways affecting respiratory syncytial virus replication.

Background: We have previously shown that probenecid inhibits RSV, influenza virus, and SARS-CoV-2 replication in vitro in preclinical animal models and in humans. In a Phase two randomized, placebo-controlled, single-blind, dose range-finding study using probenecid to treat non-hospitalized patients with symptomatic, mild-to-moderate COVID-19, we previously showed that a 1000 mg twice daily treatment for 5 days reduced the median time to viral clearance from 11 to 7 days, and a 500 mg twice daily treatment for 5 days reduced the time to viral clearance from 11 to 9 days more than the placebo.

View Article and Find Full Text PDF

Introduction: Respiratory viruses are responsible for significant worldwide morbidity and mortality. While vaccines are highly effective at reducing the morbidity and mortality associated with viral infections, this protection is incomplete. It requires a high degree of compliance, which is hindered by vaccine hesitancy.

View Article and Find Full Text PDF

Human metapneumovirus (HMPV) is an important cause of acute respiratory tract infection and causes significant morbidity and mortality. There is no specific antiviral drug to treat HMPV or vaccine to prevent HMPV. This study determined if probenecid, a host-targeting antiviral drug, had prophylactic (pre-virus) or therapeutic (post-virus) efficacy to inhibit HMPV replication in LLC-MK2 cells in vitro and in the lungs of BALB/c mice.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers developed a new small molecule antiviral called PAV-431 that was discovered through a unique screening method targeting viral protein assembly.
  • This compound has shown effectiveness against various respiratory viruses in laboratory studies and in animal models, including coronaviruses and paramyxoviruses.
  • PAV-431 works by selectively targeting a modified protein complex involved in the viral life cycle, providing a potential new approach for treating respiratory viral infections without harming the host.
View Article and Find Full Text PDF

An integrated approach combining surface-enhanced Raman spectroscopy (SERS) with a specialized deep learning algorithm to rapidly and accurately detect and quantify SARS-CoV-2 variants is developed based on an angiotensin-converting enzyme 2 (ACE2)-functionalized AgNR@SiO array SERS sensor. SERS spectra with concentrations of different variants were collected using a portable Raman system. After appropriate spectral preprocessing, a deep learning algorithm, CoVari, is developed to predict both the viral variant species and concentrations.

View Article and Find Full Text PDF

Influenza viruses cause epidemics and can cause pandemics with substantial morbidity with some mortality every year. Seasonal influenza vaccines have incomplete effectiveness and elicit a narrow antibody response that often does not protect against mutations occurring in influenza viruses. Thus, various vaccine approaches have been investigated to improve safety and efficacy.

View Article and Find Full Text PDF

Avian influenza (AI) viruses cause infection in birds and humans. Several H5N1 and H7N9 variants are highly pathogenic avian influenza (HPAI) viruses. H5N1 is a highly infectious bird virus infecting primarily poultry, but unlike other AIs, H5N1 also infects mammals and transmits to humans with a case fatality rate above 40%.

View Article and Find Full Text PDF

Influenza can cause respiratory infections, leading to significant morbidity and mortality in humans. While current influenza vaccines offer varying levels of protection, there remains a pressing need for effective antiviral drugs to supplement vaccine efforts. Currently, the FDA-approved antiviral drugs for influenza include oseltamivir, zanamivir, peramivir, and baloxavir marboxil.

View Article and Find Full Text PDF

In the early stages of drug discovery, researchers develop assays that are compatible with high throughput screening (HTS) and structure activity relationship (SAR) measurements. These assays are designed to evaluate the effectiveness of new and known molecular entities, typically targeting specific features within the virus. Drugs that inhibit virus replication by inhibiting a host gene or pathway are often missed because the goal is to identify active antiviral agents against known viral targets.

View Article and Find Full Text PDF

Introduction: Influenza virus changes its genotype through antigenic drift or shift making it difficult to develop immunity to infection or vaccination. Zoonotic influenza A virus (IAV) strains can become established in humans. Several impediments to human infection and transmission include sialic acid expression, host anti-viral factors (including interferons), and other elements that govern viral replication.

View Article and Find Full Text PDF

Interferons (IFN) are an assemblage of signaling proteins made and released by various host cells in response to stimuli, including viruses. Respiratory syncytial virus (RSV), influenza virus, and SARS-CoV-2 are major causes of respiratory disease that induce or antagonize IFN responses depending on various factors. In this review, the role and function of type I, II, and III IFN responses to respiratory virus infections are considered.

View Article and Find Full Text PDF

Probenecid is an orally bioavailable, uricosuric agent that was first approved in 1951 for the treatment of gout, but was later found to have potent, broad-spectrum antiviral activity against several respiratory viruses including SARS-CoV-2. We conducted a phase 2 randomized, placebo-controlled, single-blind, dose-range finding study in non-hospitalized patients with symptomatic, mild-to-moderate COVID-19. Patients were randomly assigned in a 1:1:1 ratio to receive either 500 mg of probenecid, 1000 mg of probenecid, or a matching placebo every 12 h for five days.

View Article and Find Full Text PDF
Article Synopsis
  • - The study focuses on developing a nanoparticle (NP) vaccine for respiratory syncytial virus (RSV), specifically comparing a wild-type RSV G protein to a modified version (S177Q) that shows improved immune response.
  • - Mice immunized with the NP-S177Q vaccine generated stronger immune responses, producing more neutralizing antibodies and showing better protection against RSV challenges compared to the wild-type.
  • - While the NP-S177Q vaccine shows promise, the overall NP vaccine platform needs enhancements due to issues with solubility and a weaker than expected Th1 immune response.
View Article and Find Full Text PDF

The respiratory syncytial virus (RSV) causes significant respiratory disease in young infants and the elderly. Immune prophylaxis in infants is currently limited to palivizumab, an anti-RSV fusion (F) protein monoclonal antibody (mAb). While anti-F protein mAbs neutralize RSV, they are unable to prevent aberrant pathogenic responses provoked by the RSV attachment (G) protein.

View Article and Find Full Text PDF

Background: Respiratory syncytial virus (RSV) is a poor inducer of antiviral interferon (IFN) responses which result in incomplete immunity and RSV disease. Several RSV proteins alter antiviral responses, including the non-structural proteins (NS1, NS2) and the major viral surface proteins, that is, fusion (F) and attachment (G) proteins. The G protein modifies the host immune response to infection linked in part through a CX3 C chemokine motif.

View Article and Find Full Text PDF

A rapid and cost-effective method to detect the infection of SARS-CoV-2 is fundamental to mitigating the current COVID-19 pandemic. Herein, a surface-enhanced Raman spectroscopy (SERS) sensor with a deep learning algorithm has been developed for the rapid detection of SARS-CoV-2 RNA in human nasopharyngeal swab (HNS) specimens. The SERS sensor was prepared using a silver nanorod array (AgNR) substrate by assembling DNA probes to capture SARS-CoV-2 RNA.

View Article and Find Full Text PDF
Article Synopsis
  • The study utilized layer-by-layer microparticle (LbL-MP) fabrication to create synthetic vaccines that present specific RSV protein components and a potential immune booster (TLR2 agonist).
  • Immunizing mice with these vaccines resulted in different immune responses; the vaccine containing the TLR2 agonist (Pam3.GM2) led to a stronger immune response and reduced Th2-related inflammation compared to the vaccine without it (GM2).
  • The research underscores the need for effective stimulation of the innate immune system during initial RSV exposures to prevent harmful immune responses, as demonstrated by the contrasting effects of the two vaccine formulations following RSV challenge.
View Article and Find Full Text PDF

It is important to understand the features affecting virus replication, fitness, and transmissibility as they contribute to the outcome of infection and affect disease intervention approaches. Respiratory syncytial virus (RSV) is a major contributor to respiratory disease, particularly in the infant and elderly populations. Although first described over 60 years ago, there are no approved vaccines and there are limited specific antiviral treatments due in part to our incomplete understanding of the features affecting RSV replication, immunity, and disease.

View Article and Find Full Text PDF

Rapid and sensitive pathogen detection is important for prevention and control of disease. Here, we report a label-free diagnostic platform that combines surface-enhanced Raman scattering (SERS) and machine learning for the rapid and accurate detection of thirteen respiratory virus species including SARS-CoV-2, common human coronaviruses, influenza viruses, and others. Virus detection and measurement have been performed using highly sensitive SiO coated silver nanorod array substrates, allowing for detection and identification of their characteristic SERS peaks.

View Article and Find Full Text PDF

Influenza B viruses (IBV) primarily infect humans, causing seasonal epidemics. The absence of an animal reservoir limits pandemic concern, but IBV infections may cause severe respiratory disease, predominantly in young children and the elderly. The IBV disease burden is largely controlled by seasonal influenza vaccination; however, immunity due to vaccination is sometimes incomplete, a feature linked to antigenic mismatches.

View Article and Find Full Text PDF

Human metapneumovirus (hMPV) is a leading cause of morbidity and hospitalization among children worldwide, however, no vaccines or therapeutics are currently available for hMPV disease prevention and treatment. The hMPV fusion (F) protein is the sole target of neutralizing antibodies. To map the immunodominant epitopes on the hMPV F protein, we isolated a panel of human monoclonal antibodies (mAbs), and the mAbs were assessed for binding avidity, neutralization potency, and epitope specificity.

View Article and Find Full Text PDF

The influenza virus has a large clinical burden and is associated with significant mortality and morbidity. The development of effective drugs for the treatment or prevention of influenza is important in order to reduce its impact. Adamantanes and neuraminidase inhibitors are two classes of anti-influenza drugs in which resistance has developed; thus, there is an urgent need to explore new therapeutic options.

View Article and Find Full Text PDF

RNA viruses like SARS-CoV-2, influenza virus, and respiratory syncytial virus (RSV) are dependent on host genes for replication. We investigated if probenecid, an FDA-approved and safe urate-lowering drug that inhibits organic anion transporters (OATs) has prophylactic or therapeutic efficacy to inhibit RSV replication in three epithelial cell lines used in RSV studies, i.e.

View Article and Find Full Text PDF

Coronavirus disease 2019 is a public health challenge requiring rapid testing for the detection of infections and transmission. Nucleic acid amplification tests targeting SARS coronavirus 2 (CoV2) are used to detect CoV2 in clinical samples. Real-time reverse transcription quantitative PCR is the standard nucleic acid amplification test for CoV2, although reverse transcription loop-mediated isothermal amplification is used in diagnostics.

View Article and Find Full Text PDF