Publications by authors named "Ralph R Minter"

Proteins can be targeted for degradation by engineering biomolecules that direct them to the eukaryotic ubiquitination machinery. For instance, the fusion of an E3 ubiquitin ligase to a suitable target binding domain creates a 'biological Proteolysis-Targeting Chimera' (bioPROTAC). Here we employ an analogous approach where the target protein is recruited directly to a human E2 ubiquitin-conjugating enzyme via an attached target binding domain.

View Article and Find Full Text PDF

We report a systematic combinatorial exploration of affinity enhancement of antibodies by insertions and deletions (InDels). Transposon-based introduction of InDels via the method TRIAD (transposition-based random insertion and deletion mutagenesis) was used to generate large libraries with random in-frame InDels across the entire single-chain variable fragment gene that were further recombined and screened by ribosome display. Knowledge of potential insertion points from TRIAD libraries formed the basis of exploration of length and sequence diversity of novel insertions by insertional-scanning mutagenesis (InScaM).

View Article and Find Full Text PDF

Doxorubicin is a chemotherapeutic agent that is commonly used to treat a broad range of cancers. However, significant cardiotoxicity, associated with prolonged exposure to doxorubicin, limits its continued therapeutic use. One strategy to prevent the uptake of doxorubicin into cardiac cells is the encapsulation of the drug to prevent non-specific uptake and also to improve the drugs' pharmacokinetic properties.

View Article and Find Full Text PDF

The majority of antibody therapeutics have been isolated from target-led drug discovery, where many years of target research preceded drug program initiation. However, as the search for validated targets becomes more challenging and target space becomes increasingly competitive, alternative strategies, such as phenotypic drug discovery, are gaining favour. This review highlights successful examples of antibody phenotypic screens that have led to clinical drug candidates.

View Article and Find Full Text PDF

Affinity- and stability-engineered variants of CTLA4-Ig fusion molecules with enhanced pharmacokinetic profiles could yield improved therapies with the potential of higher efficacy and greater convenience to patients. In this study, to our knowledge, we have, for the first time, used in vitro evolution to simultaneously optimize CTLA4 affinity and stability. We selected for improved binding to both ligands, CD80 and CD86, and screened as dimeric Fc fusions directly in functional assays to identify variants with stronger suppression of in vitro T cell activation.

View Article and Find Full Text PDF

Affinity panning of large libraries is a powerful tool to identify protein binders. However, panning rounds are followed by the tedious re-screening of the clones obtained to evaluate binders precisely. In a first application of Bead Surface Display (BeSD) we show successful in vitro affinity selections based on flow cytometric analysis that allows fine quantitative discrimination between binders.

View Article and Find Full Text PDF

The practical realization of disease modulation by catalytic degradation of a therapeutic target protein suffers from the difficulty to identify candidate proteases, or to engineer their specificity. We identified 23 measurable, specific, and new protease activities using combinatorial screening of 27 human proteases against 24 therapeutic protein targets. We investigate the cleavage of monocyte chemoattractant protein 1, interleukin-6 (IL-6), and IL-13 by matrix metalloproteinases (MMPs) and serine proteases, and demonstrate that cleavage of IL-13 leads to potent inhibition of its biological activity in vitro.

View Article and Find Full Text PDF

Most antibody therapeutics have been isolated from high throughput target-based screening. However, as the number of validated targets diminishes and the target space becomes increasingly competitive, alternative strategies, such as phenotypic screening, are gaining momentum. Here, we review successful phenotypic screens, including those used to isolate antibodies against cancer and infectious agents.

View Article and Find Full Text PDF

Owing to the challenges of cell entry, protein-based therapies have so far been restricted to extracellular targets, whereas intracellular targets have been almost exclusively addressed by small molecules. The specificity and potency of proteins would enable them to be effective intracellular drugs, provided that the proteins are delivered efficiently to appropriate intracellular compartments within specific cell types. By mimicking the natural mechanisms of toxins and other natural proteins, new intracellular delivery systems are being developed, the first of which are showing clinical efficacy.

View Article and Find Full Text PDF
Article Synopsis
  • Apoptosis can be induced through TRAIL receptors (TRAIL-R1 and TRAIL-R2) using specific agonistic antibodies.
  • Researchers developed a large panel of fully human single chain Fv fragments (scFvs) targeting these receptors, including 234 scFvs for TRAIL-R1 and 269 for TRAIL-R2, as well as 134 cross-reactive scFvs.
  • A new high-throughput apoptosis assay identified several effective scFvs that inhibit tumor cell growth, with some exhibiting significant anti-tumor activity and potential for use as therapeutic monoclonal antibodies in cancer treatment.
View Article and Find Full Text PDF

Therapeutic antibodies have become a major driving force for the biopharmaceutical industry; therefore, the discovery and development of safe and efficacious antibody leads have become competitive processes. Phage and ribosome display are ideal tools for the generation of such molecules and have already delivered an approved drug as well as a multitude of clinical candidates. Because they are capable of searching billions of antibody variants in tailored combinatorial libraries, they are particularly applicable to potency optimisation.

View Article and Find Full Text PDF

In this study, we used in vitro protein evolution with ribosome and phage display to optimize the affinity of a human IL-13-neutralizing antibody, a therapeutic candidate for the treatment of asthma, >150-fold to 81 pM by using affinity-driven stringency selections. Simultaneously, the antibody potency to inhibit IL-13-dependent proliferation in a cell-based functional assay increased 345-fold to an IC50 of 229 pM. The panoply of different optimized sequences resulting from complementarity-determining region-targeted mutagenesis and error-prone PCR using ribosome display was contrasted with that of complementarity-determining region-targeted mutagenesis alone using phage display.

View Article and Find Full Text PDF

cDNAs for Xenopus beta2-microglobulin (beta2m), the obligatory light chain of most vertebrate Major Histocompatibility Complex (MHC) class I molecules, were isolated and ESTs were identified. Alignment of the deduced amino acid sequence to other species' beta2m showed that the overall structure is evolutionarily conserved, and phylogenetic analysis showed that the Xenopus beta2m sequence is intermediate between fish and bird/mammal beta2m. The Xenopus beta2m mRNA is expressed ubiquitously with highest expression in intestine, spleen, and thymus, correlating well with classical class Ia expression.

View Article and Find Full Text PDF

Objective: To identify and characterize a fully human antibody directed against B lymphocyte stimulator (BLyS), a tumor necrosis factor-related cytokine that plays a critical role in the regulation of B cell maturation and development. Elevated levels of BLyS have been implicated in the pathogenesis of autoimmune diseases.

Methods: A human phage display library was screened for antibodies against human BLyS.

View Article and Find Full Text PDF