Conventional exciplexes are products of excited-state charge generation reactions between neutral reactants (e.g., A* + D → AD), whereas cationic exciplexes are products of charge shift reactions of cations with neutral donors (e.
View Article and Find Full Text PDFExciplexes of 9,10-dicyanoanthracene (DCA) with alkylbenzene donors in cyclohexane show structureless emission spectra, typical of exciplexes with predominantly charge-transfer (CT) character, when the donor has a relatively low oxidation potential (Eox ), e.g. hexamethylbenzene (HMB).
View Article and Find Full Text PDFAs we reported recently, endergonic to mildly exergonic electron transfer between neutral aromatics (benzenes and biphenyls) and their radical cations in acetonitrile follows a Sandros-Boltzmann (SB) dependency on the reaction free energy (ΔG); i.e., the rate constant is proportional to 1/[1 + exp(ΔG/RT)].
View Article and Find Full Text PDFIn a landmark publication over 40 years ago, Rehm and Weller (RW) showed that the electron transfer quenching constants for excited-state molecules in acetonitrile could be correlated with the excited-state energies and the redox potentials of the electron donors and acceptors. The correlation was interpreted in terms of electron transfer between the molecules in the encounter pair (A*/D ⇌ A(•-)/D(•+) for acceptor A and donor D) and expressed by a semiempirical formula relating the quenching constant, k(q), to the free energy of reaction, ΔG. We have reinvestigated the mechanism for many Rehm and Weller reactions in the endergonic or weakly exergonic regions.
View Article and Find Full Text PDFRate constants (k) for exergonic and endergonic electron-transfer reactions of equilibrating radical cations (A(•+) + B ⇌ A + B(•+)) in acetonitrile could be fit well by a simple Sandros-Boltzmann (SB) function of the reaction free energy (ΔG) having a plateau with a limiting rate constant k(lim) in the exergonic region, followed, near the thermoneutral point, by a steep drop in log k vs ΔG with a slope of 1/RT. Similar behavior was observed for another charge shift reaction, the electron-transfer quenching of excited pyrylium cations (P(+)*) by neutral donors (P(+)* + D → P(•) + D(•+)). In this case, SB dependence was observed when the logarithm of the quenching constant (log k(q)) was plotted vs ΔG + s, where the shift term, s, equals +0.
View Article and Find Full Text PDFThe photophysical properties of tris-cyclometalated iridium(III) complexes have been probed by chemical and geometric variation through the series fac- and mer-Ir(piq)(x)(ppy)(3-x) (x = 1-3; piq = 1-phenylisoquinolinato-N(∧)C(2'), ppy = 2-phenylpyridinato-N(∧)C(2')). The phosphorescent decays were recorded in solution at 295 K and in polymer films from 2 to 295 K. In the heteroleptic complexes, emission occurs based solely on the piq ligand(s), at least by the nanosecond time scale, as its excited states are the lowest energy.
View Article and Find Full Text PDFA highly emissive bis(phosphine)diarylamido dinuclear copper(I) complex (quantum yield = 57%) was shown to exhibit E-type delayed fluorescence by variable temperature emission spectroscopy and photoluminescence decay measurement of doped vapor-deposited films. The lowest energy singlet and triplet excited states were assigned as charge transfer states on the basis of theoretical calculations and the small observed S(1)-T(1) energy gap. Vapor-deposited OLEDs doped with the complex in the emissive layer gave a maximum external quantum efficiency of 16.
View Article and Find Full Text PDFNarrow-line emission and excitation spectra of the lowest triplet state have been studied in a Shpol'skii host (n-octane) for three cyclometalated IrL(2)acac complexes of current practical interest. The ligands L and acac are the C-deprotonated anions of 2-phenylpyridine, 2-benzothienylpyridine, 1-phenylisoquinoline, and acetylacetone. The occurrence of narrow lines is surprising for such nonplanar structures.
View Article and Find Full Text PDF