Background: Patients with advanced-stage pancreatic ductal adenocarcinoma (PDAC) are regularly treated with FOLFIRINOX, a chemotherapy regimen based on 5-fluorouracil, irinotecan and oxaliplatin, which is associated with high toxicity. Dosing of FOLFIRINOX is based on body surface area, risking under- or overdosing caused by altered pharmacokinetics due to interindividual differences in body composition. This study aimed to investigate the relationship between body composition and treatment toxicity in advanced stage PDAC patients treated with FOLFIRINOX.
View Article and Find Full Text PDFObjectives: Body composition assessment using CT images at the L3-level is increasingly applied in cancer research and has been shown to be strongly associated with long-term survival. Robust high-throughput automated segmentation is key to assess large patient cohorts and to support implementation of body composition analysis into routine clinical practice. We trained and externally validated a deep learning neural network (DLNN) to automatically segment L3-CT images.
View Article and Find Full Text PDFBackground & Aims: Several automated programs have been developed to facilitate body composition analysis of images from abdominal computed tomography (CT) scans. External validation in patients with colorectal cancer is necessary for use in research and clinical practice. Our aim was to validate an automatic method (AutoMATiCA) of segmenting CT images at the third lumbar level (L3) from patients with colorectal cancer, by comparing with manual segmentation.
View Article and Find Full Text PDFBackground: Computerized radiological image analysis (radiomics) enables the investigation of image-derived phenotypes by extracting large numbers of quantitative features. We hypothesized that radiomics features may contain prognostic information that enhances conventional body composition analysis. We aimed to investigate whether body composition-associated radiomics features hold additional value over conventional body composition analysis and clinical patient characteristics used to predict survival of pancreatic ductal adenocarcinoma (PDAC) patients.
View Article and Find Full Text PDFIntroduction: Sarcopenia is a muscle disease that involves loss of muscle strength and physical function and is associated with adverse health effects. Even though sarcopenia has attracted increasing attention in the literature, many research findings have not yet been translated into clinical practice. In this article, we aim to validate a deep learning neural network for automated segmentation of L3 CT slices and aim to explore the potential for clinical utilization of such a tool for clinical practice.
View Article and Find Full Text PDFBackground: This study aimed to evaluate whether hypertrophy after portal vein embolization (PVE) and maximum liver function capacity (LiMAx) are predictable by an artificial neural network (ANN) model based on computed tomography (CT) texture features.
Methods: We report a retrospective analysis on 118 patients undergoing preoperative assessment by CT before and after PVE for subsequent extended liver resection due to a malignant tumor at RWTH Aachen University Hospital. The LiMAx test was carried out in a subgroup of 55 patients prior to PVE.
Manual segmentation of muscle and adipose compartments from computed tomography (CT) axial images is a potential bottleneck in early rapid detection and quantification of sarcopenia. A prototype deep learning neural network was trained on a multi-center collection of 3413 abdominal cancer surgery subjects to automatically segment truncal muscle, subcutaneous adipose tissue and visceral adipose tissue at the L3 lumbar vertebral level. Segmentations were externally tested on 233 polytrauma subjects.
View Article and Find Full Text PDFSchizophrenia is a severe mental disorder characterized by numerous subtle changes in brain structure and function. Machine learning allows exploring the utility of combining structural and functional brain magnetic resonance imaging (MRI) measures for diagnostic application, but this approach has been hampered by sample size limitations and lack of differential diagnostic data. Here, we performed a multi-site machine learning analysis to explore brain structural patterns of T1 MRI data in 2668 individuals with schizophrenia, bipolar disorder or attention-deficit/ hyperactivity disorder, and healthy controls.
View Article and Find Full Text PDFGiven the fact that clinical bedside examinations can have a high rate of misdiagnosis, machine learning techniques based on neuroimaging and electrophysiological measurements are increasingly being considered for comatose patients and patients with unresponsive wakefulness syndrome, a minimally conscious state or locked-in syndrome. Machine learning techniques have the potential to move from group-level statistical results to personalized predictions in a clinical setting. They have been applied for the purpose of (1) detecting changes in brain activation during functional tasks, equivalent to a behavioral command-following test and (2) estimating signs of consciousness by analyzing measurement data obtained from multiple subjects in resting state.
View Article and Find Full Text PDFJ Pediatr Endocrinol Metab
November 2015
Background: Taking multiple anthropometric measurements for the description of body proportions in an accurate way is a time-consuming procedure that requires specific tools and skills. This is why we developed an alternative method based on digital photography for taking these measurements which is faster and easier to use, to make anthropometry more user-friendly and approachable to paediatricians.
Methods: We conducted a cross-sectional study in 54 children between 2 and 18 years of age.
IEEE Trans Vis Comput Graph
January 2010
Fiber tracking of Diffusion Tensor Imaging (DTI) data offers a unique insight into the three-dimensional organisation of white matter structures in the living brain. However, fiber tracking algorithms require a number of user-defined input parameters that strongly affect the output results. Usually the fiber tracking parameters are set once and are then re-used for several patient datasets.
View Article and Find Full Text PDF